![2.4 圆的方程(精练)(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/12712896/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2.4 圆的方程(精练)(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/12712896/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2.4 圆的方程(精练)(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/12712896/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2.4 圆的方程(精练)(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/12712896/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2.4 圆的方程(精练)(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/12712896/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版A版高二数学选择性必修第一册精讲+精练含答案专题
高中2.4 圆的方程精练
展开
这是一份高中2.4 圆的方程精练,文件包含24圆的方程精练解析版docx、24圆的方程精练原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
2.4 圆的方程【题组一 圆的方程】1.(2020·江苏如东高一期中)已知两点,以线段为直径的圆的方程为________________.【答案】【解析】由题得圆心的坐标为(1,0),|MN|=所以圆的半径为所以圆的方程为.故答案为2.(2020·江苏建邺.高一期中)已知圆圆心为,为坐标原点,则以为直径的圆的标准方程为_____.【答案】【解析】圆的标准方程为,则点,线段的中点为,且,因此,以为直径的圆的标准方程为.故答案为:.3.(2020·景东彝族自治县第一中学高一月考)圆C的圆心为点,且经过点,则圆C的方程为________.【答案】【解析】由于圆C的圆心为点,且经过点,圆的半径为,则,所以圆的方程为,故答案为:.4.(2020·全国高二)圆心为且经过点的圆的方程为________.【答案】【解析】圆心为,则圆的半径为:,
所以所求的圆的方程为: ,
故答案为: .5.(2020·宜宾市叙州区第一中学校高三二模(理))经过点且圆心在直线上的圆的方程是____.【答案】【解析】设圆的方程为因为圆心在直线上,得,所以可得圆的方程为,因为圆经过点,所以,解得,因此,所求圆的方程为,故答案为.6.(2018·甘肃武威十八中课时练习)过三点、、的圆的方程为____________________.【答案】.【解析】点、的中点为(2,5),,中垂线为x=2.点、的中点为,,所以,中垂线为x-7y+5=0.两直线交点为圆心D(2,1),r=AD=5.所以圆的方程为,也即 .填.【题组二 根据圆的方程求参数】1.(2020·天津南开。高三二模)方程x2+y2﹣kx+2y+k2﹣2=0表示圆的一个充分不必要条件是( )A.k∈(﹣∞,﹣2)∪(2,+∞) B.k∈(2,+∞)C.k∈(﹣2,2) D.k∈(0,1]【答案】D由x2+y2﹣kx+2y+k2﹣2=0,得,若方程x2+y2﹣kx+2y+k2﹣2=0表示圆,则0,即﹣2<k<2.∴A,B为方程x2+y2﹣kx+2y+k2﹣2=0表示圆的既不充分也不必要条件,C为充要条件,而(0,1]⊂(﹣2,2),则D为充分不必要条件.故选:D.2.(2020·包头市田家炳中学高二期中)方程x2+y2+ax﹣2by+c=0表示圆心为C(2,2),半径为2的圆,则a,b,c的值依次为( )A.4、2、4 B.﹣4、2、4 C.﹣4、2、﹣4 D.4、﹣2、﹣4【答案】B【解析】x2+y2+ax﹣2by+c=0可化为:,解得故选:B3.(2020·河北新华.石家庄二中高二月考)圆的圆心到直线的距离为2,则( )A. B. C. D.2【答案】B【解析】圆的标准方程是,圆心为,∴,解得.故选:B.4.(2020·全国高二课时练习)若方程表示圆,则实数的取值范围为( )A. B. C. D.【答案】A【解析】由题,则解得故选:A5.(2020·梅河口市第五中学高一月考)若,则方程表示的圆的个数为______.【答案】1【解析】方程 即方程,可以表示以,为圆心、半径为的圆.当时,圆心、半径为0,不表示圆.当时,圆心、半径为1,表示一个圆.当时,圆心,、,不表示圆.当时,圆心,、,不表示圆.综上可得,所给的方程表示的圆的个数为1,故答案为:1.【题组三 点与圆的位置关系】1.(2020·苏州市相城区陆慕高级中学高一月考)若点在圆的内部,则实数a的取值范围是( )A.(1,1) B.(0,1) C. D.【答案】A【解析】因为点在圆的内部,则,解得.故选A.2.(2020·西夏.宁夏大学附属中学高一期末)若M(x0,y0)为圆x2+y2=r2(r>0)上一点,则直线x0x+y0y=r2与该圆的位置关系为( )A.相切 B.相交 C.相离 D.相切或相交【答案】A【解析】因为M(x0,y0)为圆x2+y2=r2(r>0)上一点,所以因此圆心O到直线x0x+y0y=r2距离为,即直线x0x+y0y=r2与该圆相切,选A.3.(2020·浙江高三月考)已知,,为单位圆上的三点,有,,则( )A.0 B. C.2 D.3【答案】B【解析】因为,,为单位圆上的三点,所以原点是△的外心,又因为,,所以原点是△的重心,所以△是正三角形,该题为选择题,可以用特殊点来求解,取,此时,故选:B.4.(2020·江苏淮安.高一期中)若坐标原点在圆的内部,则实数的取值范围是( )A. B. C. D.【答案】D【解析】把原点坐标代入圆的方程得:解得:本题正确选项:5.(2018·安徽太湖.高二月考)对于任意实数,点与圆的位置关系的所有可能是( )A.都在圆内 B.都在圆外 C.在圆上.圆外 D.在圆上.圆内.圆外【答案】B【解析】把点代入圆方程,得,所以点P在圆外,选B.5.(2020·盐城市伍佑中学高一月考)若曲线上所有的点均在第二象限内,则的取值范围为( )A. B. C. D.【答案】C【解析】由曲线方程可知:曲线是圆心为,半径为的圆曲线上所有的点均在第二象限内 ,解得:的取值范围是本题正确选项:【题组四 对称问题】1.(2019·四川西昌.高二期中(理))圆关于直线对称的圆的标准方程是( )A. B.C. D.【答案】A【解析】由题意有,圆的圆心C,半径为3,设所求圆的圆心为,由圆C和圆C’关于直线l对称得,点C和点C’关于直线l对称,则,解得,则所求圆的标准方程是.故选:A.2.(2019·全国专题练习)已知圆C经过点,若圆C上存在点B与点A关于直线对称,且圆心为,则圆C半径为A. B. C.10 D.20【答案】B【解析】圆C上存在点B与点A关于直线对称,则直线经过圆心,所以,所以圆C半径,故选B.3.已知圆,圆与圆关于直线对称,则圆的方程为( )A. B.C. D.【答案】B【解析】根据题意,设圆的圆心为,圆,其圆心为,半径为,若圆与圆关于直线对称,则点与关于直线对称,且圆的半径为,则有,解可得,则圆的方程为,故选B。4.(2019·湖北襄阳.高二期末(理))点是圆上的不同两点,且点关于直线对称,则该圆的半径等于( )A. B. C.3 D.1【答案】C【解析】圆的圆心坐标,因为点M,N在圆上,且点M,N关于直线l:x-y+1=0对称,所以直线l:x-y+1=0经过圆心,所以,k=4.所以圆的方程为:即,圆的半径为3.故选C.【题组五 求轨迹方程】1.(2019·绍兴鲁迅中学高二期中)当点在圆上变动时,它与定点的连线的中点的轨迹方程是( )A. B. C. D.【答案】D【解析】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.2.(2020·平罗中学高二月考(理))当点在圆上变动时,它与定点的连结线段的中点的轨迹方程是( )A. B.C. D.【答案】B【解析】设,线段的中点为,(如图)则即,点在圆上变动,即即故选:B3.(2020·全国高三一模(文))已知圆,,是圆上两点,点且,则线段中点的轨迹方程是______.【答案】【解析】如图所示,是线段的中点,则,因为,于是,在中,,,,由勾股定理得,整理得的轨迹是.故答案为:
相关试卷
这是一份选择性必修 第一册2.4 圆的方程达标测试,共28页。试卷主要包含了4 圆的方程等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.4 圆的方程优秀达标测试,文件包含24圆的方程-2023-2024学年高二数学考点讲解练人教A版2019选择性必修第一册解析版docx、24圆的方程-2023-2024学年高二数学考点讲解练人教A版2019选择性必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.4 圆的方程精品巩固练习,文件包含24圆的方程-2023-2024高二数学同步精品讲义人教A版2019选择性必修第一册解析版docx、24圆的方程-2023-2024学年高二数学同步精品讲义人教A版2019选择性必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)