沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习
展开七年级数学第二学期第十三章相交线 平行线专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
2、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )
A.相等 B.互补 C.相等或互补 D.不能确定
3、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
4、在下列各题中,属于尺规作图的是( )
A.用直尺画一工件边缘的垂线
B.用直尺和三角板画平行线
C.利用三角板画的角
D.用圆规在已知直线上截取一条线段等于已知线段
5、下列说法中正确的有( )个
①两条直线被第三条直线所截,同位角相等;
②同一平面内,不相交的两条线段一定平行;
③过一点有且只有一条直线垂直于已知直线;
④经过直线外一点有且只有一条直线与这条直线平行;
⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
A.1 B.2 C.3 D.4
6、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
7、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
8、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )
A.30° B.60° C.80° D.不能确定
9、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
10、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.
2、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.
3、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
4、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
5、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,直线相交于点平分.
(1)若,求∠BOD的度数;
(2)若,求∠DOE的度数.
2、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.
3、如图,AB∥DG,∠1+∠2=180°.
(1)试说明:AD∥EF;
(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
4、阅读下面的推理过程,将空白部分补充完整.
已知:如图,在△ABC中,FGCD,∠1 = ∠3.
求证:∠B + ∠BDE= 180°.
解:因为FGCD(已知),
所以∠1= .
又因为∠1 = ∠3 (已知),
所以∠2 = (等量代换).
所以BC ( ),
所以∠B + ∠BDE = 180°(___________________).
5、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,,.
(1)求证:;
(2)请直接写出的度数.
6、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.
(1)如图1,若,试说明;
(2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
①,当t为何值时,直线OE平分;
②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
7、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
8、直线、相交于点,平分,,,求与的度数.
9、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
10、如图,平面上有三个点A、B、C.
(1)根据下列语句按要求画图.
①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
②连接CA、CD、CB;
③过点C画CE⊥AD,垂足为点E;
④过点D画DF∥AC,交CB的延长线于点F.
(2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
②用刻度尺或圆规检验DF与AC的大小关系为_________.
-参考答案-
一、单选题
1、B
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
2、C
【分析】
分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.
【详解】
解:如图所示:BE⊥AE,BC⊥AC,
∴∠BCF=∠AEF=90°,
∴∠A+∠AFE=90°,∠B+∠BFC=90°,
∴∠A=∠B
如图所示:BD⊥AD,BC⊥AC,
∴∠ADE=∠BCE=90°,
∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,
∴∠A=∠CBE,
∵∠CBE+∠DBC=180°,
∴∠A+∠DBC=180°,
综上所述,∠A与∠B的关系是相等或互补,
故选C.
【点睛】
本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.
3、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
4、D
【分析】
根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.
【详解】
解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;
B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;
C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;
D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;
故选D.
【点睛】
本题主要考查了尺规作图的定义,解题的关键在于熟知定义.
5、A
【分析】
根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.
【详解】
①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;
②同一平面内,不相交的两条直线一定平行,故②不正确;
③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;
④经过直线外一点有且只有一条直线与这条直线平行,故④正确
⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.
故正确的有④,共1个,
故选A.
【点睛】
本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.
6、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
7、C
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
8、B
【分析】
由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
【详解】
解:∵AD∥BC,∠FEC=30°,
∴∠AGE=∠GEC,
由翻折变换的性质可知∠GEF=∠FEC=30°,
∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
故选:B.
【点睛】
本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
9、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
10、D
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
二、填空题
1、3 2 2
【分析】
根据同位角、内错角、同旁内角的定义判断即可;
【详解】
如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.
【点睛】
本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.
2、,
【分析】
由,,可得再证明可得
【详解】
解: ,,
故答案为:
【点睛】
本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
3、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
4、50°
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
5、15°
【分析】
根据平行线的性质和三角板的特殊角的度数解答即可.
【详解】
解:如图:
∵ABCD,
∴∠BAD=∠D=30°,
∵∠BAE=45°,
∴∠α=45°﹣30°=15°,
故答案为:15°.
【点睛】
此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.
三、解答题
1、(1)20°;(2)60°
【分析】
(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
【详解】
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
2、∠C的度数为120°
【分析】
首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.
【详解】
解:∵∠CDE=150°,
∴∠CDB=180°-∠CDE=30°,
又∵ABCD,
∴∠ABD=∠CDB=30°,
∵BE平分∠ABC,
∴∠ABC=2∠ABD=60°,
∵ABCD,
∴∠C=180°-∠ABC=120°.
【点睛】
本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.
3、(1)见解析;(2)∠B=38°.
【分析】
(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
【详解】
(1)∵AB∥DG,
∴∠BAD=∠1,
∵∠1+∠2=180°,
∴∠BAD+∠2=180°.
∵AD∥EF .
(2)∵∠1+∠2=180°且∠2=142°,
∴∠1=38°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=38°,
∵AB∥DG,
∴∠B=∠CDG=38°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
4、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【分析】
首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
【详解】
解:因为FGCD(已知),
所以∠1=∠2.
又因为∠1 = ∠3 (已知),
所以∠2 =∠3(等量代换).
所以(内错角相等,两直线平行),
所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.
5、(1)见解析;(2)
【分析】
(1)根据可得,,再根据内错角相等两直线平行即可得证;
(2)根据两直线平行的性质可得,从而可得,再由即可求解.
【详解】
解:(1)∵,
∴,
∵,
∴,
∴;
(2)∵,,
∴,
,
∵,
∴,
∴.
【点睛】
本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.
6、(1)见解析;(2)①或;②
【分析】
(1)根据垂直的性质即可求解;
(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
【详解】
解:(1)∵,
∴,
∴.
(2)①∵OB平分,,
∴.
情况1:当OE平分时,
则旋转之后,
∴OB旋转的角度为,
∴,.
情况2:当OF平分时,同理可得,OB旋转的角度为,
∴,.
综上所述,或.
②∵,
∴OP在内部,如图所示,
由题意知,,
∴,∵OM平分,
∴,
∴,
∴.
【点睛】
此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
7、见解析
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
8、∠3=50°,∠2=65°.
【分析】
根据邻补角的性质、角平分线的定义进行解答即可.
【详解】
∵∠FOC=90°,∠1=40°,
∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,
∴∠AOD=180°-∠3=180°-50°=130°,
又∵OE平分∠AOD,
∴∠2=∠AOD=65°.
【点睛】
本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
9、(1)两角相等,见解析;(2)180°
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
10、(1)见解析;(2)①;垂线段最短;②相等
【分析】
(1)根据题意作图即可;
(2)根据垂线段最短以及圆规进行检验即可.
【详解】
(1)如图所示,即为所求;
(2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
②用圆规检验DF=AC.
【点睛】
本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
2020-2021学年第十三章 相交线 平行线综合与测试复习练习题: 这是一份2020-2021学年第十三章 相交线 平行线综合与测试复习练习题,共34页。试卷主要包含了在下列各题中,属于尺规作图的是,如图所示,下列说法错误的是,如图,直线a等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了如图,直线AB,如图,直线b等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练: 这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共29页。试卷主要包含了下列命题中,为真命题的是等内容,欢迎下载使用。