终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题练习试题(无超纲)

    立即下载
    加入资料篮
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题练习试题(无超纲)第1页
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题练习试题(无超纲)第2页
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题练习试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十三章 相交线 平行线综合与测试课时作业

    展开

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试课时作业,共30页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )
    A.∠A=∠ACEB.∠B=∠ACEC.∠B=∠ECDD.∠B+∠BCE=180°
    2、如图,若AB∥CD,CD∥EF,那么BCE=( )
    A.180°-2+1B.180°-1-2C.2=21D.1+2
    3、下列说法中正确的是( )
    A.锐角的2倍是钝角B.两点之间的所有连线中,线段最短
    C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点
    4、如图,木工用图中的角尺画平行线的依据是( )
    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    5、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )
    A.2cmB.小于2cmC.不大于2cmD.4cm
    6、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )
    A.30°B.60°C.80°D.不能确定
    7、如图,直线被所截,下列说法,正确的有( )
    ①与是同旁内角;
    ②与是内错角;
    ③与是同位角;
    ④与是内错角.
    A.①③④B.③④C.①②④D.①②③④
    8、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段( )的长度
    A.CDB.ADC.BDD.BC
    9、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
    A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°
    10、如图,下列条件能判断直线l1//l2的有( )
    ①;②;③;④;⑤
    A.1个B.2个C.3个D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.
    2、如图,已知ABCD,,,则____.
    3、在数学课上,王老师提出如下问题:
    如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.
    小李同学的作法如下:
    ①连接AB;
    ②过点A作AC⊥直线l于点C;
    则折线段B﹣A﹣C为所求.
    王老师说:小李同学的方案是正确的.
    请回答:该方案最节省材料的依据是垂线段最短和______.
    4、如图,从人行横道线上的点P处过马路,下列线路中最短的是________.
    5、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
    ①如果ab,a⊥c,那么b⊥c;
    ②如果ba,ca,那么bc;
    ③如果b⊥a,c⊥a,那么b⊥c;
    ④如果b⊥a,c⊥a,那么bc.
    其中正确的是__.(填写序号)
    三、解答题(10小题,每小题5分,共计50分)
    1、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.
    (1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
    (2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
    (3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
    2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A= ( ).
    ∴AB∥ ( ).
    又∵∠1=∠2(已知),
    ∴AB∥CD ( ).
    ∴EF∥ ( ).
    ∴∠FDG=∠EFD ( ).
    3、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
    4、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.
    证明:∵AD∥BC(已知),
    ∴∠3= ( ).
    ∵∠3=∠4(已知),
    ∴∠4= ( ).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF( ).
    即∠BAF= .
    ∴∠4=∠BAF.( ).
    ∴AB∥CD( ).
    4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
    (1)求∠BOC的度数;
    (2)试说明OE平分∠AOC.
    5、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?
    (2)经过直线上一点A画的垂线,这样的垂线能画出几条?
    (3)经过直线外一点B画的垂线,这样的垂线能画出几条?
    6、根据解答过程填空(写出推理理由或数学式):
    如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF( ),
    ∴∠D=∠DCF( ).
    ∵∠B=∠D(已知),
    ∴( )=∠DCF(等量代换),
    ∴AB∥DC( ).
    7、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.
    (1)如图1,若,试说明;
    (2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
    ①,当t为何值时,直线OE平分;
    ②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
    8、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
    (1)过点C画AD的平行线CE;
    (2)过点B画CD的垂线,垂足为F.
    9、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.
    (1)如图1,求证:;
    (2)如图2,若,请直接写出图中与互余的角,不需要证明.
    10、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
    将下列证明过程补充完整:
    证明:∵CE平分(已知),
    ∴__________(角平分线的定义),
    ∵(已知),
    ∴___________(等量代换),
    ∴(______________).
    (探究)已知:如图②,点E在AB上,且CE平分,.求证:.
    (应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据平行线的判定定理分析即可.
    【详解】
    A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
    B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
    C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
    D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
    故选:B.
    【点睛】
    本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
    2、A
    【分析】
    根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
    【详解】
    ∵AB∥CD,CD∥EF,
    ∴∠1=∠BCD,∠ECD+∠2=180°,
    ∴BCE=∠BCD+∠ECD=180°-2+1,
    故选A.
    【点睛】
    本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
    3、B
    【分析】
    根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
    【详解】
    解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
    B.两点之间的所有连线中,线段最短,正确;
    C.相等的角不一定是对顶角,故不符合题意;
    D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
    故选:B.
    【点睛】
    本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
    4、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    5、C
    【分析】
    根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
    【详解】
    解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,
    ∴点到直线的距离不大于,
    故选:C.
    【点睛】
    本题考查了垂线段最短的性质,熟记性质是解题的关键.
    6、B
    【分析】
    由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
    【详解】
    解:∵AD∥BC,∠FEC=30°,
    ∴∠AGE=∠GEC,
    由翻折变换的性质可知∠GEF=∠FEC=30°,
    ∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
    故选:B.
    【点睛】
    本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
    7、D
    【分析】
    根据同位角、内错角、同旁内角的定义可直接得到答案.
    【详解】
    解:①与是同旁内角,说法正确;
    ②与是内错角,说法正确;
    ③与是同位角,说法正确;
    ④与是内错角,说法正确,
    故选:D.
    【点睛】
    此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    8、A
    【分析】
    根据和点到直线的距离的定义即可得出答案.
    【详解】
    解:,
    点到的距离是线段的长度,
    故选:A.
    【点睛】
    本题考查了点到直线的距离,理解定义是解题关键.
    9、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:
    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    10、D
    【分析】
    根据平行线的判定定理进行依次判断即可.
    【详解】
    ①∵∠1,∠3互为内错角,∠1=∠3,∴;
    ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
    ③∠4,∠5互为同位角,∠4=∠5,∴;
    ④∠2,∠3没有位置关系,故不能证明 ,
    ⑤,,
    ∴∠1=∠3,
    ∴,
    故选D.
    【点睛】
    此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
    二、填空题
    1、50°
    【分析】
    根据平行线的性质计算即可;
    【详解】
    解:如图所示,由折叠可得,∠3=∠1=65°,
    ∴∠CEG=130°,
    ∵AB∥CD,
    ∴∠2=180°﹣∠CEG=180°﹣130°=50°.
    故答案为:50°.
    【点睛】
    本题主要考查了平行线的性质应用,准确计算是解题的关键.
    2、95°
    【分析】
    过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
    【详解】
    解:如图,过点E作EF∥AB,
    ∵EF//AB,
    ∴∠BEF+∠ABE=180°,
    ∵∠ABE=120°,
    ∴∠BEF=180°-∠ABE=180°-120°=60°,
    ∵EF//AB,AB//CD,
    ∴EF//CD,
    ∴∠FEC=∠DCE,
    ∵∠DCE=35°,
    ∴∠FEC=35°,
    ∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
    故答案为:95°
    【点睛】
    本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
    3、两点之间线段最短
    【分析】
    根据两点之间线段最短即可得到答案.
    【详解】
    解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
    故答案为:两点之间线段最短.
    【点睛】
    本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
    4、PC
    【分析】
    根据点到直线的距离,垂线段最短进行求解即可.
    【详解】
    解:∵点到直线的距离,垂线段最短,
    ∴从人行横道线上的点P处过马路,线路最短的是PC,
    故答案为:PC.
    【点睛】
    本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.
    5、①②④
    【分析】
    根据两直线的位置关系一一判断即可.
    【详解】
    解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
    ②如果ba,ca,那么bc,正确;
    ③如果b⊥a,c⊥a,那么bc,错误;
    ④如果b⊥a,c⊥a,那么bc,正确;
    故答案为:①②④.
    【点睛】
    本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
    三、解答题
    1、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
    【分析】
    (1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
    (2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
    (3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
    【详解】
    证明:(1)结论为MR∥NP.
    如题图1∵AB∥CD,
    ∴∠EMB=∠END,
    ∵MR平分∠EMB,NP平分∠EBD,
    ∴,
    ∴∠EMR=∠ENP,
    ∴MR∥BP;
    故答案为MR∥BP;
    (2)结论为:MR∥NP.
    如题图2,∵AB∥CD,
    ∴∠AMN=∠END,
    ∵MR平分∠AMN,NP平分∠EBD,

    ∴∠RMN=∠ENP,
    ∴MR∥NP;
    (3)结论为:MR⊥NP.
    如图,设MR,NP交于点Q,过点Q作QG∥AB,
    ∵AB∥CD,
    ∴∠BMN+∠END=180°,
    ∵MR平分∠BMN,NP平分∠EBD,
    ∴,
    ∴∠BMR+∠NPD=,
    ∵GQ∥AB,AB∥CD,
    ∴GQ∥CD∥AB,
    ∴∠BMQ=∠GQM,∠GQN=∠PND,
    ∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
    ∴MR⊥NP,
    【点睛】
    本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
    2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    3、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
    【分析】
    三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
    【详解】
    (1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
    (2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
    (3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
    以第一个命题为例证明如下:
    ∵AB∥DE,
    ∴∠B=∠DOC.
    ∵BC∥EF,
    ∴∠DOC=∠E,
    ∴∠B=∠E.
    【点睛】
    本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
    4、
    (1)∠BOC=60°
    (2)见解析
    【分析】
    (1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
    (2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
    【详解】
    (1)∵∠AOB=∠BOC+∠AOC=180°,
    又∠BOC:∠AOC=1:2,
    ∴∠AOC=2∠BOC,
    ∴∠BOC+2∠BOC=180°,
    ∴∠BOC=60°;
    (2)∵OD平分∠BOC,
    ∴∠BOD=∠DOC,
    ∵∠DOC+∠COE=90°,∠AOB是平角,
    ∴∠AOE+∠BOD=90°,
    ∴∠AOE=∠COE
    即OE平分∠AOC.
    【点睛】
    本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
    5、(1)能画无数条;(2)能画一条;(3)能画一条
    【分析】
    用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.
    【详解】
    解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;
    (2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;
    (3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条.
    【点睛】
    本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.
    6、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【分析】
    根据平行线的性质与判定条件完成证明过程即可.
    【详解】
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(内错角相等,两直线平行),
    ∴∠D=∠DCF(两直线平行,内错角相等).
    ∵∠B=∠D(已知),
    ∴∠B=∠DCF(等量代换),
    ∴AB∥DC(同位角相等,两直线平行).
    故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【点睛】
    本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
    7、(1)见解析;(2)①或;②
    【分析】
    (1)根据垂直的性质即可求解;
    (2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
    ②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∴.
    (2)①∵OB平分,,
    ∴.
    情况1:当OE平分时,
    则旋转之后,
    ∴OB旋转的角度为,
    ∴,.
    情况2:当OF平分时,同理可得,OB旋转的角度为,
    ∴,.
    综上所述,或.
    ②∵,
    ∴OP在内部,如图所示,
    由题意知,,
    ∴,∵OM平分,
    ∴,
    ∴,
    ∴.
    【点睛】
    此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
    8、(1)见解析;(2)见解析
    【分析】
    (1)根据要求作出图形即可.
    (2)根据要求作出图形即可.
    【详解】
    解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
    所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
    如图,直线CE即为所求作.
    (2)根据题意得:CD是长为6,宽为3的长方形的对角线,
    所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
    如图,直线BF即为所求作.
    【点睛】
    本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
    9、
    (1)证明见解析;
    (2).
    【分析】
    (1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
    (2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
    (1)
    证明:∵,,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)
    与互余的角有:.
    证明:∵,
    ∴,,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,即.
    综上,可知与互余的角有:.
    【点睛】
    本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
    10、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
    【分析】
    感知:读懂每一步证明过程及证明的依据,即可完成解答;
    探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
    应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
    【详解】
    感知
    ∵CE平分(已知),
    ∴ECD(角平分线的定义),
    ∵(已知),
    ∴ECD(等量代换),
    ∴(内错角相等,两直线平行).
    故答案为:ECD;ECD;内错角相等,两直线平行
    探究
    ∵CE平分,
    ∴,
    ∵,
    ∴,
    ∵.
    应用
    ∵BE平分∠DBC,
    ∴,
    ∵AE∥BC,
    ∴∠CBE=∠E,∠BAE+∠ABC=180゜,
    ∴∠E=∠ABE,
    ∵,
    ∴∠ABC=80゜


    【点睛】
    本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习,共29页。试卷主要包含了在下列各题中,属于尺规作图的是,下列说法中正确的有个等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了如图,直线AB,如图,直线b等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共29页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是,下列说法中正确的有个等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map