人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案
展开三角函数的图象和性质变式
1.三角函数图像变换
将函数的图像作怎样的变换可以得到函数的图像?
变式1:将函数的图像作怎样的变换可以得到函数的图像?
解:(1)先将函数图象上各点的纵坐标扩大为原来的2倍(横坐标不变),即可得到函数的图象;
(2)再将函数上各点的横坐标缩小为原来的(纵坐标不变),得到函数的图象;
(3)再将函数的图象向右平移个单位,得到函数的图象.
变式2:将函数的图像作怎样的变换可以得到函数的图像?
解:(1)先将函数图象上各点的纵坐标缩小为原来的(横坐标不变),即可得到函数的图象;
(2)再将函数上各点的横坐标扩大为原来的2倍(纵坐标不变),得到函数的图象;
(3)再将函数的图象向右平移个单位,得到函数的图象.
变式3:将函数的图像作怎样的变换可以得到函数的图像?
解:
另解:
(1)先将函数的图象向右平移个单位,得到函数的图象;
(2)再将函数上各点的横坐标扩大为原来的2倍(纵坐标不变),得到函数的图象;
(3)再将函数图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到函数的图象.
2.三角函数性质
求下列函数的最大、最小值以及达到最大(小)值时的值的集合.
(1) ; (2)
变式1:已知函数在区间上的最小值是,则的最小值等于 ( )
(A) (B) (C)2 (D)3
答案选B
变式2:函数y=2sinx的单调增区间是( )
A.[2kπ-,2kπ+](k∈Z)
B.[2kπ+,2kπ+](k∈Z)
C.[2kπ-π,2kπ](k∈Z)
D.[2kπ,2kπ+π](k∈Z)
答案选A.因为函数y=2x为增函数,因此求函数y=2sinx的单调增区间即求函数y=sinx的单调增区间.
变式3:关于x的函数f(x)=sin(x+)有以下命题:
①对任意的,f(x)都是非奇非偶函数;
②不存在,使f(x)既是奇函数,又是偶函数;
③存在,使f(x)是奇函数;
④对任意的,f(x)都不是偶函数。
其中一个假命题的序号是_____.因为当=_____时,该命题的结论不成立。
答案:①,kπ(k∈Z);或者①,+kπ(k∈Z);或者④,+kπ(k∈Z)
解析:当=2kπ,k∈Z时,f(x)=sinx是奇函数.当=2(k+1)π,k∈Z时f(x)=-sinx仍是奇函数.当=2kπ+,k∈Z时,f(x)=cosx,或当=2kπ-,k∈Z时,f(x)=-cosx,f(x)都是偶函数.所以②和③都是正确的.无论为何值都不能使f(x)恒等于零.所以f(x)不能既是奇函数又是偶函数.①和④都是假命题.
高中人教版新课标A1.5 函数y=Asin(ωx+ψ)教学设计: 这是一份高中人教版新课标A1.5 函数y=Asin(ωx+ψ)教学设计,共10页。
高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案: 这是一份高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案,共3页。
人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案: 这是一份人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案,共6页。