|教案下载
终身会员
搜索
    上传资料 赚现金
    1.2《子集、全集、补集》 --全集补集 教案(苏教版必修1)
    立即下载
    加入资料篮
    1.2《子集、全集、补集》 --全集补集 教案(苏教版必修1)01
    1.2《子集、全集、补集》 --全集补集 教案(苏教版必修1)02
    1.2《子集、全集、补集》 --全集补集 教案(苏教版必修1)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中苏教版1.2 子集、全集、补集教学设计

    展开
    这是一份高中苏教版1.2 子集、全集、补集教学设计,共7页。

    第四课时 子集、全集、补集(二)
    教学目标:
    使学生了解全集的意义,理解补集的概念;通过概念教学,提高学生逻辑思维能力和分析、解决问题能力;渗透相对的观点.
    教学重点:
    补集的概念.
    教学难点:
    补集的有关运算.
    教学过程:
    Ⅰ.复习回顾
    1.集合的子集、真子集如何寻求?其个数分别是多少?
    2.两个集合相等应满足的条件是什么?
    Ⅱ.讲授新课
    [师]事物都是相对的,集合中的部分元素与集合之间关系就是
    部分与整体的关系.
    请同学们由下面的例子回答问题:
    幻灯片(A):
    看下面例子
    A={班上所有参加足球队同学}
    B={班上没有参加足球队同学}
    S={全班同学}
    那么S、A、B三集合关系如何?


    [生]集合B就是集合S中除去集合A之后余下来的集合.
    即为如图阴影部分
    由此借助上图总结规律如下:
    幻灯片(B):
    1.补集
    一般地,设S是一个集合,A是S的一个子集(即AS),由S中所有不属于A的元素组成的集合,叫做S中集合A的补集(或余集).
    记作CSA,即CSA={x|x∈3且xa}
    上图中阴影部分即表示A在S中补集CSA
    2.全集
    如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.
    [师]解决某些数学问题时,就可以把实数集看作全集U,那么有理数集Q的补集CUQ就是全体无理数的集合.
    举例如下:请同学们思考其结果.
    幻灯片(C):
    举例,请填充
    (1)若S={2,3,4},A={4,3},则CSA=____________.
    (2)若S={三角形},B={锐角三角形},则CSB=___________.
    (3)若S={1,2,4,8},A=,则CSA=_______.
    (4)若U={1,3,a2+2a+1},A={1,3},CUA={5},则a=_______
    (5)已知A={0,2,4},CUA={-1,1},CUB={-1,0,2},求B=_______
    (6)设全集U={2,3,m2+2m-3},a={|m+1|,2},CUA={5},求m.
    (7)设全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求CUA、m.
    师生共同完成上述题目,解题的依据是定义
    例(1)解:CSA={2}
    评述:主要是比较A及S的区别.
    例(2)解:CSB={直角三角形或钝角三角形}
    评述:注意三角形分类.
    例(3)解:CSA=3
    评述:空集的定义运用.
    例(4)解:a2+2a+1=5,a=-1±
    评述:利用集合元素的特征.
    例(5)解:利用文恩图由A及CUA先求U={-1,0,1,2,4},再求B={1,4}.
    例(6)解:由题m2+2m-3=5且|m+1|=3解之 m=-4或m=2
    例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6
    当m=4时,x2-5x+4=0,即A={1,4}
    又当m=6时,x2-5x+6=0,即A={2,3}
    故满足题条件:CUA={1,4},m=4;CUB={2,3},m=6.
    评述:此题解决过程中渗透分类讨论思想.
    Ⅲ.课堂练习
    课本P10练习 1,2,3,4
    Ⅳ.课时小结
    1.能熟练求解一个给定集合的补集.
    2.注意一些特殊结论在以后解题中的应用.
    Ⅴ.课后作业
    (一)课本P10习题1.2 3,4
    3.解:因有一组对边平行的四边形是梯形.故S集合是由梯形、平行四边形构成,而A={x|x是平行四边形},那么CSA={x|x是梯形}.
    补充:
    1.判断下列说法是否正确,并在题后括号内填“”或“”:
    (1)若S={1,2,3},A={2,1},则CSA={2,3} ( )
    (2)若S={三角形},A={直角三角形},则CSA={锐角或钝角三角形} ( )
    (3)若U={四边形},A={梯形},则CUA={平行四边形} ( )
    (4)若U={1,2,3},A=,则CUA=A ( )
    (5)若U={1,2,3},A=5,则CUA= ( )
    (6)若U={1,2,3},A={2,3},则CUA={1} ( )
    (7)若U是全集且AB,则CUACUB ( )
    解:紧扣定义,利用性质求解相关题目.(2)(5)(6)正确,其余错误.
    在(1)中,因S={1,2,3},A={2,1},则CSA={3}.
    (2)若S={三角形},则由A={直角三角形}得CSA={锐角或钝角三角形}.
    (3)由梯形及平行四边形构成的图形集合不一定是四边形的全部.如既不是梯形,也不是平行四边形.
    (4)因U={1,2,3},A=,故CUA=U.
    (5)U={1,2,3},A=5,则CUA=.
    (6)U={1,2,3},A={2,3},则CUA={1}.
    (7)若U是全集且A=B,则CUACUB.
    评述:上述题目涉及补集较多,而补集问题解决前提必须考虑全集,故一是先看全集U,二是由A找其补集,应有A∪(CUA)=U.
    2.填空题
    (1)A={x∈R|x≥3},U=R,CUA=_____________________.
    (2)A={x∈R|x>3},U=R,CUA=_____________________.
    (3)已知U中有6个元素,CUA=,那么A中有_______个元素.
    (4)U=R,A={x|a≤x≤b},CUA={x|x>9或x<3=,则a=_______,b=_________
    解:由全集、补集意义解答如下:
    (1)由U=R及A={x|x≥3},知CUA={x|x<3=(可利用数形结合).对于(2),由U=R及A={x|x>3},知CUA={x|x≤3},注意“=”成立与否.对于(3),全集中共有6个元素,A的补集中没有元素,故集合A中有6个元素.对于(4),全集为R因A={x|a≤x≤B},其补集CUA={x|x>9或x<3},则A=3,B=9.
    3.已知U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},求CUA、CUB.
    解:因x∈N,x≤10时,x=0、1、2、3、4、5、6、7、8、9、10
    A={小于10的正奇数}={1,3,5,7,9},B={小于11的质数}={2,3,5,7},那么CUA={0,2,4,6,8,10},CUB={0,1,4,6,8,9,10}.
    4.已知A={0,2,4,6},CUA={-1,-3,1,3},CUB={-1,0,2},用列举法写出B.
    解:因A={0,2,4,6},CUA={-1,-3,1,3},
    故U=A∪(CUA)={0,1,2,3,4,6,-3,-1}
    而CUB={-1,0,2},故B={-3,1,3,4,6}.
    5.已知全集U={2,3,a2-2a-3},A={2,|a-7|},CUA={5},求a的值.
    解:由补集的定义及已知有:a2-2a-3=5且|a-7|=3,由a2-2a-3=5有a=4或a=-2,当a=4时,有|a-7|=3,当a=-2时|a-7|=9(舍)
    所以符合题条件的a=4
    评述:此题和第4题都用CUA={x|x∈5,且xA},有U中元素或者属于A,或者属于CUA.二者必居其一,也说明集合A与其补集相对于全集来说具有互补性,这一点在解题过程中常会遇到,但要针对全集而言.
    6.定义A-B={x|x∈A,且xB},若M={1,2,3,4,5},N={2,4,8},求N-M的表达式.
    分析:本题目在给出新定义的基础上,应用定义解决问题.要准确把握定义的实质,才能尽快进入状态.
    解:由题所给定义:N-M={x|x∈N,且xM}={8}
    评述:从所给定义看:类似补集但又区别于补集,A-B与CAB中元素的特征相同,后者要求BA.而前者没有这约束,问题要求学生随时接受新信息,并能应用新信息解决问题.
    7.已知集合M={x2+x-2=0},N={x|x<a},使MCRN的所有实数a的集合记为A,又知集合B={y|y=-x2-4x-6},试判断A与B的关系.
    分析:先找M中元素,后求B中元素取值范围.
    解:因x2+x-2=0的解为-2、1,即M={-2,1},N={x|x<a},
    故CRN={x|x≥a},使MCRN的实数a的集合A={a|a≤-2},
    又y=-x2-4x-6=-(x+2)2-2≤-2
    那么B={y|y≤-2},故A=B
    8.已知I=R,集合A={x|x2-3x+2≤0},集合B与CRA的所有元素组成全集R,集合B与CRA的元素公共部分组成集合{x|0<x<1或2<x<3},求集合B.
    解:因a={x|x2-3x+2≤0}={x|1≤x≤2},所以CRA={x|x<1或x>2}
    B与CRA的所有元素组成全集R,则AB.B与CRA的公共元素构成{x|0<x<1或2<x<3},则{x|0<x<1或2<x<3}B
    在数轴上表示

    集合B为A及{x|0<x<1或2<x<3}的元素组成,即B={x|0<x<3}.
    评述:研究数集的相互关系时,可将题设通过数轴示意,借助直观性探究,既易于理解.又能提高解题速度.上面提到的所有元素与公共元素是后面将要研究的交集、并集,就是B∪CRA=R,B∩CRA={x|0<x<1或2<x<3}.
    9.设U={(x,y)|x,y∈R},A={(x,y)|=1},B={(x,y)|y=x+1},求CUA与B的公共元素.
    解:a={(x,y)|y=x+1,x≠2},它表示直线y=x+1去掉(2,3)的全体,从而CUA={(2,3)},而B={(x,y)|y=x+1}表示直线y=x+1上的全体点的集合.如图所示,CUA与B的公共元素就是(2,3).
    评述:关于点集问题通常将其转化为直角坐标平面上的图形的问题来加以研究可以得到直观形象,简捷明了的效果.
    (二)1.预习内容:课本P10~P11
    2.预习提纲:
    (1)交集与并集的含义是什么?能否说明?
    (2)求两个集合交集或并集时如何借助图形.



































    子集、全集、补集(二)
    1.判断下列说法是否正确,并在题后括号内填“”或“”:
    (1)若S={1,2,3},A={2,1},则CSA={2,3} ( )
    (2)若S={三角形},A={直角三角形},则CSA={锐角或钝角三角形} ( )
    (3)若U={四边形},A={梯形},则CUA={平行四边形} ( )
    (4)若U={1,2,3},A=,则CUA=A ( )
    (5)若U={1,2,3},A=5,则CUA= ( )
    (6)若U={1,2,3},A={2,3},则CUA={1} ( )
    (7)若U是全集且AB,则CUACUB ( )
    2.填空题:
    (1)A={x∈R|x≥3},U=R,CUA=_____________________.
    (2)A={x∈R|x>3},U=R,CUA=_____________________.
    (3)已知U中有6个元素,CUA=,那么A中有_______个元素.
    (4)U=R,A={x|a≤x≤b},CUA={x|x>9或x<3},则a=_______,b=_________
    3.已知U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},求CUA、CUB.





    4.已知A={0,2,4,6},CUA={-1,-3,1,3},CUB={-1,0,2},用列举法写出B.





    5.已知全集U={2,3,a2-2a-3},A={2,|a-7|},CUA={5},求a的值.






    6.定义A-B={x|x∈A,且xB},若M={1,2,3,4,5},N={2,4,8},求N-M的表达式.



    7.已知集合M={x2+x-2=0},N={x|x<a},使MCRN的所有实数a的集合记为A,又知集合B={y|y=-x2-4x-6},试判断A与B的关系.







    8.已知I=R,集合A={x|x2-3x+2≤0},集合B与CRA的所有元素组成全集R,集合B与CRA的元素公共部分组成集合{x|0<x<1或2<x<3},求集合B.












    9.设U={(x,y)|x,y∈R},A={(x,y)|=1},B={(x,y)|y=x+1},求CUA与B的公共元素.





    相关教案

    高中数学苏教版必修11.2 子集、全集、补集教学设计: 这是一份高中数学苏教版必修11.2 子集、全集、补集教学设计,共3页。教案主要包含了问题情境,学生活动,数学建构,数学运用,回顾小结,作业等内容,欢迎下载使用。

    苏教版必修11.2 子集、全集、补集教学设计: 这是一份苏教版必修11.2 子集、全集、补集教学设计,共7页。

    苏教版必修1第1章 集合1.2 子集、全集、补集教案设计: 这是一份苏教版必修1第1章 集合1.2 子集、全集、补集教案设计,共4页。教案主要包含了创设情境,活动尝试,师生探究,数学理论,巩固运用,回顾反思,课后练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map