初中数学人教版九年级上册21.3 实际问题与一元二次方程教案及反思
展开实际问题与一元二次方程
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元导学流程:
一、复习引入
说出三角形、长方形、正方形、平行四边形、梯形、菱形及圆的面积公式 (学生口答,老师点评)
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
思考: (1)本体中有哪些数量关系?
(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?
(3)如何利用已知的数量关系选取未知数并列出方程?
()你有几种解法?
解法一:设上下边衬宽均为9xcm,左右边衬宽均为7xcm,则有:
解法二:设正中央的矩形两边分别为9xcm,7xcm。
三、课堂检测
(一)、选择题
1.直角三角形两条直角边的和为7,面积为6,则斜边为( ).
A. B.5 C. D.7
2.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是( ).
A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;
B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;
C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;
D.以上都不对
3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是( ).
A.8cm B.64cm C.8cm2 D.64cm2
(二)、综合提高题
1.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为多少?.
2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?
3.谁能量出道路的宽度:
如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,只有无刻度的足够长的绳子一条,如何量出道路的宽度?
五、体验中考
(1)(2012山东省青岛市,12,3)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列方程为 .
(2)(2011江苏宿迁,16,3分)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 ▲ m(可利用的围墙长度超过6m).
(3)(2010山东济南)
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
2021学年21.3 实际问题与一元二次方程教学设计及反思: 这是一份2021学年21.3 实际问题与一元二次方程教学设计及反思,共3页。教案主要包含了自主学习,自学反馈,质疑精讲,总结提高等内容,欢迎下载使用。
初中人教版21.3 实际问题与一元二次方程教学设计: 这是一份初中人教版21.3 实际问题与一元二次方程教学设计,共3页。教案主要包含了情境导入,新知探究,例题讲解,巩固练习,课堂小结,作业设计等内容,欢迎下载使用。
数学九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程教案: 这是一份数学九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程教案,共2页。教案主要包含了重点难点,新课导入,课堂探究等内容,欢迎下载使用。