|试卷下载
搜索
    上传资料 赚现金
    2022年中考复习基础必刷40题专题16不等式与不等式组
    立即下载
    加入资料篮
    2022年中考复习基础必刷40题专题16不等式与不等式组01
    2022年中考复习基础必刷40题专题16不等式与不等式组02
    2022年中考复习基础必刷40题专题16不等式与不等式组03
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考复习基础必刷40题专题16不等式与不等式组

    展开
    这是一份2022年中考复习基础必刷40题专题16不等式与不等式组,共22页。

    1. 若−3A.−1≤x<5B.−1
    2. 若关于х的一元一次不等式组 3x−12≤x+3x≤a的解集为x≤a;且关于y的分式方程y−ay−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是( )
    A.7B.-14C.28D.-56

    3. 已知a,b为实数,则解是−1A.{ax<1bx>1B.{ax>1bx<1C.{ax>1bx>1D.{ax<1bx<1

    4. 已知点P(a−1, a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为( )(阴影部分)
    A.
    B.
    C.
    D.

    5. 下列四个命题中,是真命题的是( )
    A.9的平方根是3
    B.x=3 是不等式x−1>0的解集
    C.方程组x=1y=2是二元一次方程组
    D.平面直角坐标系中点A2,−3 在第二象限

    6. 若a−b<0,则下列不等式正确的是( )
    A.3a>3bB.−2a>−2bC.a−1>b−1D.3−a<3−b

    7. 若x>y,则下列不等式不一定正确的是( )
    A.x+3>y+3B.−2x<−2yC.mx>myD.12x>12y

    8. 已知aA.a+1C.−13a>−13bD.如果c<0,那么ac
    9. 若不等式的解集为x≤−4,在数轴上表示此解集,下列图形中正确的是( )
    A.
    B.
    C.
    D.

    10. 不等式组x<2,x>3的解集是( )
    A.x<2B.x>3C.2
    11. 下面各个结论中,正确的是( )
    A.3a一定大于2aB.13a一定小于a
    C.a+b一定大于a−bD.a2+2a+1不小于0

    12. 下列各数,是不等式7+5x<23的解的是( )
    A.3B.4C.5D.6

    13. 不等式组x≤−3,x>m有两个整数解,则实数m的取值范围为( )
    A.−5≤m<−4B.−5
    14. a,b都是有理数,且aA.a+1>b+1B.1−a<1−bC.5a<5bD.a2>b2

    15. 关于x的不等式组2x−1<4x+5,x+1≤m的解集为−3A.3B.4C.5D.6

    16. 对于任意实数a,b,定义一种运算:a*b=ab−a+b−2.例如,2*5=2×5−2+5−2=11,请根据上述的定义解决问题.若不等式3*x<4,则该不等式的正整数解是( )
    A.1B.1,2C.2D.不存在

    17. 已知关于x的不等式组{x+1≥2,x−m<0有3个整数解,则m的取值范围是( )
    A.3
    18. 已知x>y,则下列不等式不成立的是( )
    A.x−2>y−2B.2x>2y
    C.−3x<−3yD.−3x+2>−3y+2

    19. 若a>b,则下列不等式变形正确的是( )
    A.a+5−4bD.3a−2≤3b−2

    20. 下列方程或不等式的变形中用到分配律的是( )
    A.由3x−5x<5,得−2x<5
    B.由2x−y=5,得y=2x−5
    C.由x−y2=1,得x−y2×2=1×2
    D.由−x≥1,得x≤−1

    21. 在平面直角坐标系中,如果直线l与直线y=−2x+1平行,且截距为3,那么直线1的表达式是______________

    22. 关于π的不等式组 −x−a<31+2x3≥x−1 恰有2个整数解,则α的取值范围是________.

    23. 按下列程序(如图),进行运算规定:程序运行到“判断结果是否≥43”为一次运算.若该程序运算进行了3次才停止,则x的取值范围是________


    24. 不等式组x<−3,x<2的解集是________.

    25. 不等式31−x>4−2x的解集为________.

    26. 七年级下册数学课本有如下6章:《相交线与平行线》、《实数》、《平面直角坐标系》、《二元一次方程组》、《不等式与不等式组》、《数据的收集、整理与描述》.期末试卷编题要求,每章至少有3个题,全卷总题数不超过26题,若本次期末试卷的全卷总题数为x,则x的取值范围是________.

    27. 不等式3x+1≤x−3的解集为________.

    28. 若关于x的一元一次不等式组{x−1>0,2x−a>0的解集是x>1,则a的取值范围是________.

    29. 若关于x的不等式的解集如图所示,则这个不等式的解集是________.


    30. 若关于x的不等式2x−1≤x+m恰好有3个正整数解,则m的取值范围为________.

    31. 已知x”、“<”或“=”)

    32. 从−1,−23,0,231这五个数字中,随机抽取一个数记为a,则使得关于x的方程ax+2x−3=1的解为正数的概率是________.

    33.
    (1)已知关于x的不等式组x+2>m+nx−1
    (2)不等式组x>2,x<3a−1有解,则a的取值范围是________.

    34. 2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式: 227 (约率)和355113(密率).同时期数学家何承天发明的调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是设实数x的不足近似值和过剩近似值分别为ba和dc(即有ba
    35. 在平面直角坐标系中,已知点Px+2,x−1在第三象限,则x的取值范围是________.

    36. 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
    (1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;

    (2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助学校选出最省钱的一种租车方案.

    37. 某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:

    (1)该采购员最多可购进篮球多少个?

    (2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?

    38. 解不等式组2x+3>3xx+33−x−16≥13,
    (1)解不等式组2x+3>3xx+33−x−16≥13,并用数轴表示解集;

    (2)求出满足(1)中不等式组的所有整数解的和.

    39. 红瓜子和萝卜干是某地的土特产.小华去市场购买了6千克红瓜子和3千克萝卜干共用了108元;小平以同样的单价购买了5千克红瓜子和2千克萝卜干共用了88元.
    (1)求红瓜子和萝卜干的单价分别是多少?

    (2)已知小红想要购买红瓜子和萝卜干共20千克,如果她想购买红瓜子的千克数超过萝卜干的千克数的4倍,且她身上只有296元,请问她有哪几种购买方案?(红瓜子和萝卜干的千克数都取整数)

    40. 某经销商从市场得知如下信息:
    他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x台,这两种品牌手表全部销售完后获得利润为y元.
    (1)求y与x之间的函数关系式;

    (2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?

    (3)选择(2)中哪种进货方案,该经销商可获利最大?最大利润是多少元?
    参考答案与试题解析
    2022年中考基础必刷题40题——专题十六 不等式与不等式组
    一、 选择题 (本题共计 20 小题 ,每题 3 分 ,共计60分 )
    1.
    【答案】
    D
    【考点】
    一元一次方程的解
    解一元一次不等式
    【解析】
    此题暂无解析
    【解答】
    D
    2.
    【答案】
    C
    【考点】
    解一元一次不等式组
    一元一次不等式组的整数解
    分式方程的解
    【解析】
    此题暂无解析
    【解答】
    C
    3.
    【答案】
    D
    【考点】
    解一元一次不等式组
    【解析】
    根据不等式组解集为−1【解答】
    选项A、∵ 所给不等式组的解集为−1设a>0 ,则b>0
    解得x>1b,x<1a
    解集都是正数;若同为负数可得到解集都是负数,故此选项错误;
    选项B、∵ 所给不等式组的解集为−1设a>0,则b>0
    解得x>1a,x<1b
    解集都是正数;若同为负数可得到解集都是负数;故此选项错误;
    选项C、所给不等式组的解集为−1设a>0 ,则b<0
    解得:x>1a,x<1b
    ∴ .原不等式组无解,同理得到把2个数的符号全部改变后也无解,故此选项错误;
    选项D、:所给不等式组的解集为−1设a>0 ,则b<0 ,解得x<1a x>1b
    :.原不等式组有解,可能为−14.
    【答案】
    C
    【考点】
    在数轴上表示不等式的解集
    【解析】
    此题暂无解析
    【解答】
    解:点Pa−1,a+2在平面直角坐标系的第二象限内,
    则有a−1<0,a+2>0
    解得−2故选C.
    5.
    【答案】
    C
    【考点】
    平方根
    不等式的解集
    二元一次方程组的定义
    象限中点的坐标
    【解析】
    此题暂无解析
    【解答】
    A . 9的算数平方根是3
    B . x>1 是不等式x−1>0的解集
    C . 方程组x=1y=2是二元一次方程组
    D . 平面直角坐标系中点A2,−3 在第四象限
    6.
    【答案】
    B
    【考点】
    不等式的性质
    【解析】
    根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.
    【解答】
    解:∵a−b<0,
    ∴a∴3a<3b,−2a>−2b,a−1−b,
    ∴3−a>3−b,
    则正确的是B,其余错误.
    故选B.
    7.
    【答案】
    C
    【考点】
    不等式的性质
    【解析】
    根据不等式的性质逐个判断即可.
    【解答】
    解:A,∵ x>y,∴ x+3>y+3,故本选项正确,不符合题意;
    B,∵ x>y,∴ −2x<−2y,故本选项正确,不符合题意;
    C,∵ x>y,∴ 当m>0时,mx>my,当m<0时,mxD,∵ x>y,∴ 12x>12y,故本选项正确,不符合题意.
    故选C.
    8.
    【答案】
    D
    【考点】
    不等式的性质
    【解析】
    利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.
    【解答】
    解;A,不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;
    B,不等式两边同时乘以4,不等号方向不变,故本选项正确,不符合题意;
    C,不等式两边同时乘以−13,不等号方向改变,故本选项正确,不符合题意;
    D,不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意.
    故选D.
    9.
    【答案】
    A
    【考点】
    在数轴上表示不等式的解集
    【解析】
    根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥"","≤"’要用实心圆点表示;“<”,“>”要用空心圆点表示,解答即可.
    【解答】
    解:不等式的解集为x≤−4,在数轴上表示此解集,下列图形中正确的是
    .
    故选A.
    10.
    【答案】
    D
    【考点】
    解一元一次不等式组
    【解析】
    根据:大大取大,小小取小,大小小大取中,大大小小取不着,确定出两个不等式的公共解集即可.
    【解答】
    解:根据大大小小取不着,
    可得:不等式组x<2,x>3无解.
    故选D.
    11.
    【答案】
    D
    【考点】
    不等式的性质
    【解析】
    可以根据不等式的法则去比较大小;亦可用举特例的方法将选项排除.
    【解答】
    解:A,当a<0时,3a<2a,故A错误;
    B,当a<0时,13a大于a,故B错误;
    C,当a>0,b<0时,a+b小于a−b,故C错误;
    D.a2−2a+1=a−12≥0,故D正确.
    故选D.
    12.
    【答案】
    A
    【考点】
    解一元一次不等式
    【解析】
    不等式移项求出解集,判断即可.
    【解答】
    解:7+5x<23,
    5x<16,
    x<3.2,
    则x=3是不等式的解.
    故选A.
    13.
    【答案】
    A
    【考点】
    解一元一次不等式组
    不等式的解集
    一元一次不等式组的整数解
    【解析】
    求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.
    【解答】
    解:∵ x≤−3,x>m,
    ∴ 不等式组的解集为m∵ 不等式组有两个整数解,
    ∴ −5≤m<−4.
    故选A.
    14.
    【答案】
    C
    【考点】
    不等式的性质
    【解析】
    根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.
    【解答】
    解:A,等式的两边都加1,不等号的方向不变,故A错误;
    B,不等式的两边都乘以−1再加1,不等号的方向改变,故B错误;
    C,不等式的两边都乘以5,不等号的方向不变,故C正确;
    D,不等式的两边都乘以12,不等号的方向不变,故D错误.
    故选C.
    15.
    【答案】
    D
    【考点】
    解一元一次不等式组
    【解析】
    求出不等式组的解集,根据已知得出m−1=5从而求出m的值.
    【解答】
    解:2x−1<4x+5①,x+1≤m②,
    解不等式①得:x>−3,
    解不等式②得: x≤m−1,
    ∵ 不等式组2x−1<4x+5,x+1≤m的解集为−3∴ m−1=5,
    ∴ m=6.
    故选D.
    16.
    【答案】
    B
    【考点】
    解一元一次不等式
    一元一次不等式的整数解
    【解析】
    根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
    【解答】
    解:∵ 3*x<4,
    ∴ 3x−3+x−2<4,
    ∴ x<94,
    ∵ x为正整数,
    ∴ x=1,2.
    故选B.
    17.
    【答案】
    A
    【考点】
    解一元一次不等式组
    一元一次不等式组的整数解
    【解析】
    先求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,然后根据不等式组有三个整数解,可知整数解只能是1,2,3,继而可求得m的取值范围.
    【解答】
    解:x+1≥2①,x−m<0②,
    由①得:x≥1,
    由②得:x∴不等式组的解集为:1≤x∵整数解共有3个,
    ∴整数解为:1,2,3,
    ∴3故选A.
    18.
    【答案】
    D
    【考点】
    不等式的性质
    【解析】
    根据不等式的性质,逐项判断即可.
    【解答】
    解:A,因为x>y,所以x−2>y−2,故A不符合题意;
    B,因为x>y,所以2x>2y,故B不符合题意;
    C,因为x>y,所以−3x<−3y,故C不符合题意;
    D,因为x>y,所以−3x<−3y,所以−3x+2<−3y+2,故D符合题意.
    故选D.
    19.
    【答案】
    B
    【考点】
    不等式的性质
    【解析】
    根据不等式的性质逐项判定即可
    【解答】
    解:A,在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.故A选项错误;
    B,在不等式a>b的两边同时除以3,不等式仍成立,再同时乘−1,不等式符号改变,即−a3<−b3.故B选项正确;
    C,在不等式a>b的两边同时乘以−4,不等号方向改变,即−4a<−4b.故C选项错误;
    D,在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a−2>3b−2,故D选项错误.
    故选B.
    20.
    【答案】
    A
    【考点】
    等式的性质
    不等式的性质
    【解析】
    根据等式的性质,不等式的性质,合并同类项的法则,逐一判断,即可解答.
    【解答】
    解:A,由3x−5x<5,得−2x<5,运用了乘法分配律来合并同类项;
    B,由2x−y=5,得y=2x−5,运用了移项的法则;
    C,由x−y2=1,得x−y2×2=1×2,运用了等式性质;
    D,由−x≥1,得x≤−1,运用了不等式的性质.
    故选A.
    二、 填空题 (本题共计 15 小题 ,每题 3 分 ,共计45分 )
    21.
    【答案】
    y=-2x+3
    【考点】
    两直线相交非垂直问题
    三角形的面积
    一次函数图象上点的坐标特点
    解一元一次不等式组
    待定系数法求一次函数解析式
    【解析】
    此题暂无解析
    【解答】
    y=-2x+3
    22.
    【答案】
    5≤a<6
    【考点】
    一元一次不等式组的整数解
    解一元一次不等式组
    【解析】
    求出每个不等式的解集,根据不等式组整数解的个数得出关于a的不等式,解之可得答案.
    【解答】
    解:解不等式- x+a<3,得: x>a−3解不等式1+2x3≥x−1,得: x≤4∵ 不等式组有2个整数解,∴ 223.
    【答案】
    17、8≤x<13
    【考点】
    解一元一次不等式
    由实际问题抽象出一元一次不等式组
    一元一次不等式组的应用
    【解析】
    此题暂无解析
    【解答】
    由题得2[2(2x-3)-3]-3≥43,且2(2x-3)-3<43,解得8x≥64,且2x<26,故8≤x<13
    24.
    【答案】
    x<−3
    【考点】
    解一元一次不等式组
    【解析】
    根据求不等式组解集的方法即可得出结论.
    【解答】
    解:由“同小取小”可知,
    不等式组x<−3,x<2的解集是x<−3.
    故答案为:x<−3.
    25.
    【答案】
    x<−1
    【考点】
    解一元一次不等式
    【解析】
    本题应按照去括号,移项,合并同类项,系数化为1这个步骤来解.
    【解答】
    解:去括号得,3−3x>4−2x,
    移项及合并同类项得,−x>1,
    系数化为1得,x<−1.
    故答案为:x<−1.
    26.
    【答案】
    18≤x≤26
    【考点】
    一元一次不等式的实际应用
    【解析】
    根据题意列出不等式并加以化简即可.
    【解答】
    解:若本次期末试卷的全卷总题数为x,
    则由题意得:3×6≤x≤26,
    ∴18≤x≤26.
    故答案为:18≤x≤26.
    27.
    【答案】
    x≤−2
    【考点】
    解一元一次不等式
    【解析】

    【解答】
    解:3x+1≤x−3,
    移项,得3x−x≤−3−1.
    合并同类项,得2x≤−4.
    系数化为1,得x≤−2.
    故答案为:x≤−2.
    28.
    【答案】
    a≤2
    【考点】
    解一元一次不等式组
    【解析】
    分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再结合不等式组的解集为x>1得出关于a的不等式组,解之可得答案.
    【解答】
    解:解不等式x−1>0,得:x>1,
    解不等式2x−a>0,得:x>a2.
    ∵ 不等式组的解集为x>1,
    ∴ a2≤1,
    解得a≤2.
    故答案为:a≤2.
    29.
    【答案】
    x>−1
    【考点】
    在数轴上表示不等式的解集
    【解析】
    此题暂无解析
    【解答】
    解:由图知,x>−1.
    故答案为:x>−1.
    30.
    【答案】
    1≤m<2
    【考点】
    解一元一次不等式
    一元一次不等式的整数解
    【解析】
    首先利用不等式的基本性质解不等式,然后根据正整数解只有3个,求出m的取值范围.
    【解答】
    解:2(x−1)≤x+m,
    x≤m+2.
    ∵ 正整数解有3个,
    ∴正整数解为1,2,3,
    ∴ 3≤m+2<4,
    ∴ 1≤m<2.
    故答案为:1≤m<2.
    31.
    【答案】
    >
    【考点】
    不等式的性质
    【解析】
    根据不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
    【解答】
    解:x−2y.
    故答案为:>.
    32.
    【答案】
    35
    【考点】
    分式方程的解
    一元一次不等式组的整数解
    概率公式
    【解析】
    此题暂无解析
    【解答】
    35
    33.
    【答案】
    1
    a>1
    【考点】
    解一元一次不等式组
    不等式的解集
    有理数的乘方
    【解析】
    此题暂无解析
    【解答】
    1
    a>1
    34.
    【答案】
    1712
    【考点】
    解一元一次不等式
    由实际问题抽象出一元一次不等式
    【解析】
    此题暂无解析
    【解答】
    1712
    35.
    【答案】
    x<−2
    【考点】
    解一元一次不等式
    点的坐标
    【解析】
    此题暂无解析
    【解答】
    x<−2
    三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )
    36.
    【答案】
    解:(1)租用甲种汽车x辆,则租用乙种汽车8−x辆.
    由两种型号汽车需载290名学生以及100件行李,
    得40x+308−x≥290,10x+208−x≥100,解得5≤x≤6.
    因为x为整数,所以x=5或6.
    所以有两种租车方案,方案一:租用甲种汽车5辆,乙种汽车3辆;
    方案二:租用甲种汽车6辆,乙种汽车2辆.
    (2)方案一的费用:5×2000+3×1800=15400(元);
    方案二的费用:6×2000+2×1800=15600(元).
    因为15600>15400元,所以方案一更省钱,
    所以第一种租车方案最省钱,即学校应租用甲种汽车5辆,乙种汽车3辆.
    【考点】
    一元一次不等式组的应用
    【解析】
    (1)租用甲种汽车x辆,则租用乙种汽车8−x辆.
    根据题意,得40x+308−x≥290,10x+208−x≥100,解得5≤x<6
    因为x为整数,所以x=5或6.
    所以有两种租车方案,方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆.
    (2)方案一的费用:5×2000+3×1800=15400(元);
    方案二的费用:6×2000+2×1800=15600(元).
    因为15600>15400元,所以方案一更省钱,
    所以第一种租车方案最省钱,即学校应租用甲种汽车5辆,乙种汽车3辆.
    【解答】
    解:(1)租用甲种汽车x辆,则租用乙种汽车8−x辆.
    由两种型号汽车需载290名学生以及100件行李,
    得40x+308−x≥290,10x+208−x≥100,解得5≤x≤6.
    因为x为整数,所以x=5或6.
    所以有两种租车方案,方案一:租用甲种汽车5辆,乙种汽车3辆;
    方案二:租用甲种汽车6辆,乙种汽车2辆.
    (2)方案一的费用:5×2000+3×1800=15400(元);
    方案二的费用:6×2000+2×1800=15600(元).
    因为15600>15400元,所以方案一更省钱,
    所以第一种租车方案最省钱,即学校应租用甲种汽车5辆,乙种汽车3辆.
    37.
    【答案】
    (1)该采购员最多可购进篮球60个;
    (2)采购员至少要购篮球58个,该商场最多可盈利2600元.
    【考点】
    一元一次不等式的实际应用
    【解析】
    (1)首先设采购员最多购进篮球x个,排球100−x个,列出不等式方程求解;
    (2)由题意知篮球利润大于排球,则可推出篮球最多时商场盈利最多.
    【解答】
    (1)设采购员购进篮球x个,根据题意得:
    130x+100100−x≤1885
    解得x≥60.5
    因为x为正整数,所以x的最大值是60.
    答:采购员最多购进篮球60个;
    (2)设至少采购篮球x个,则排球采购100−x个,
    则130x+100100−x≤11825160−130x+120−100100−x≥250加250②
    解得:58≤x≤60.8
    篮球的利润大于排球的利润,因此这100个球中,当篮球最多时,商场可盈利最多,
    故篮球60个,此时排球40个,商场可盈利160−130×60+120−100×40=1800+800=2600(元).所以采购员至少要购篮球58个,该商场最多可盈利2600元.
    38.
    【答案】
    解:2x+3>3x①x+33−x−16≥13②,
    解①得,x<3,
    解②得:x≥−5,
    在数轴上表示如下:
    ∴ 原不等式组的解集为−5≤x<3.
    (2)∵ −5≤x<3符合条件的x的整数有: −5,−4,−3 −2 ,-1,0,1,2
    故−5−4−3−2−1+0+1+2=−12
    【考点】
    在数轴上表示不等式的解集
    不等式的解集
    【解析】
    此题暂无解析
    【解答】
    解:2x+3>3x①x+33−x−16≥12②,
    解①得,x<3,
    解②得:x≥−4,
    在数轴上表示如下:
    ∴ 原不等式组的解集为−4≤x<3.
    (2)∵ −5≤x<3符合条件的x的整数有: −5,−4,−3 −2 ,-1,0,1,2
    故−5−4−3−2−1+0+1+2=−12
    39.
    【答案】
    解:(1)设红瓜子的单价为x元/千克,萝卜干的单价为y元/千克,
    依题意,得6x+3y=108,5x+2y=88,
    解得x=16,y=4,
    答:红瓜子的单价为16元/千克,萝卜干的单价为4元/千克.
    (2)设购买红瓜子a千克,则购买萝卜干20−a千克,
    依题意,得16a+420−a≤296,a>420−a,
    解得16∴a可以取17、18.
    则有两种购买方案:
    方案一:购买红瓜子17千克,购买萝卜干3千克;
    方案二:购买红瓜子18千克,购买萝卜干2千克.
    【考点】
    二元一次方程组的应用——销售问题
    由实际问题抽象出一元一次不等式组
    【解析】


    【解答】
    解:(1)设红瓜子的单价为x元/千克,萝卜干的单价为y元/千克,
    依题意,得6x+3y=108,5x+2y=88,
    解得x=16,y=4,
    答:红瓜子的单价为16元/千克,萝卜干的单价为4元/千克.
    (2)设购买红瓜子a千克,则购买萝卜干20−a千克,
    依题意,得16a+420−a≤296,a>420−a,
    解得16∴a可以取17、18.
    则有两种购买方案:
    方案一:购买红瓜子17千克,购买萝卜干3千克;
    方案二:购买红瓜子18千克,购买萝卜干2千克.
    40.
    【答案】
    解:(1)y=(900−700)x+(160−100)×(100−x)
    =140x+6000,
    其中700x+100(100−x)≤40000,
    得x≤50,
    即y=140x+6000(0(2)令y≥12600,
    则140x+6000≥12600,
    ∴ x≥47.1.
    又∵ x≤50,
    ∴ 47.1≤x≤50
    ∴ 经销商有以下三种进货方案:
    (3)∵ y=140x+6000,140>0,
    ∴ y随x的增大而增大,
    ∴ x=50时,y取得最大值.
    又∵ 140×50+6000=13000,
    ∴ 选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【考点】
    一次函数的应用
    一元一次不等式组的整数解
    【解析】
    (1)根据利润y=(A售价−A进价)×A手表的数量+(B售价−B进价)×B手表的数量,根据总资金不超过4万元得出x的取值范围,列式整理即可;
    (2)全部销售后利润不少于1.26万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;
    (3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
    【解答】
    解:(1)y=(900−700)x+(160−100)×(100−x)
    =140x+6000,
    其中700x+100(100−x)≤40000,
    得x≤50,
    即y=140x+6000(0(2)令y≥12600,
    则140x+6000≥12600,
    ∴ x≥47.1.
    又∵ x≤50,
    ∴ 47.1≤x≤50
    ∴ 经销商有以下三种进货方案:
    (3)∵ y=140x+6000,140>0,
    ∴ y随x的增大而增大,
    ∴ x=50时,y取得最大值.
    又∵ 140×50+6000=13000,
    ∴ 选择方案③进货时,经销商可获利最大,最大利润是13000元.品名
    厂家批发价(元/个)
    商场零售价(元/个)
    篮球
    130
    160
    排球
    100
    120
    A品牌手表
    B品牌手表
    进价(元/台)
    700
    100
    售价(元/台)
    900
    160
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50
    相关试卷

    2022年中考复习基础必刷40题专题30勾股定理: 这是一份2022年中考复习基础必刷40题专题30勾股定理,共34页。

    2022年中考复习基础必刷40题专题40圆的有关计算: 这是一份2022年中考复习基础必刷40题专题40圆的有关计算,共34页。试卷主要包含了 圆柱形水桶的底面周长为3等内容,欢迎下载使用。

    2022年中考复习基础必刷40题专题4 实数与数轴: 这是一份2022年中考复习基础必刷40题专题4 实数与数轴,共20页。试卷主要包含了 选择题, 填空题, 解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022年中考复习基础必刷40题专题16不等式与不等式组
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map