人教版新课标A选修2-21.5定积分的概念课文配套课件ppt
展开1.理解连续函数的概念,了解定积分的实际背景及“以直代曲”“以不变代变”的思想方法.2.会用分割、近似代替、求和、取极限的方法求曲边梯形的面积和汽车行驶的路程.
观察图①和图②,其中阴影部分的面积可用梯形的面积公式来求,而图③中阴影部分有一边是曲线段.
[问题] 如何求图③中阴影部分的面积呢?[提示] 若把区间[a,b]分成许多小区间,进而把阴影部分拆分为一些小曲边梯形,近似地求出这些小曲边梯形的面积,分割的曲边梯形数目越多,所求得的面积越精确.
如果函数y=f(x)在某个区间I上的图象是一条__________的曲线,那么就把它称为区间I上的连续函数.
1.曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①).2.求曲边梯形面积的方法与步骤:(1)分割:把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些____________ (如图②);(2)近似代替:对每个小曲边梯形“__________”,即用________的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的__________ (如图②);
(3)求和:把以近似代替得到的每个小曲边梯形面积的近似值__________;(4)取极限:当小曲边梯形的个数趋向无穷时,所有小曲边梯形的面积之和趋向一个_______,即为曲边梯形的面积.
如果物体做变速直线运动,速度函数为v=v(t),那么它在时间t所在的区间[a,b]内的路程(或位移)也可以运用(1)________;(2)__________;(3)_________;(4)__________的方法求得.
2.汽车行驶的路程与曲边梯形的面积之间的关系求汽车行驶的路程实际上也是求时间-速度坐标系中的曲边梯形的面积,所以求汽车行驶的路程与求曲边梯形的面积方法一样.
1.在“近似代替”中,函数f(x)在区间[xi,xi+1]上的近似值( )A.只能是左端点的函数值f(xi)B.只能是右端点的函数值f(xi+1)C.可以是该区间内任一点的函数值f(ξi)(ξi∈[xi,xi+1])D.以上答案均正确解析: 作近似计算时,Δx=xi+1-xi很小,误差可忽略,所以f(x)可以是[xi,xi+1]上任一值f(ξi).答案: C
解析: 对于v=at+b,当a=0时为匀速直线运动,当a≠0时为匀变速直线运动,其中a>0时为匀加速直线运动,a<0时为匀减速直线运动,对于v=at2+bt+c(a≠0)及v=v(t)是t的三次、四次函数时,汽车做的都是变速(即变加速或变减速)直线运动,故B是错误的.答案: B
3.在计算由曲线y=-x2以及直线x=-1,x=1,y=0所围成的图形面积时,若将区间[-1,1]n等分,则每个小区间的长度为________.
4.利用分割、近似代替、求和、取极限的办法求函数y=1+x,x=1,x=2的图象与x轴围成梯形的面积并用梯形的面积公式加以验证.
求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形面积.
求曲边梯形面积的四个步骤:第一步:分割.在区间[a,b]中任意插入n-1个分点,将它等分成n个小区间[xi-1,xi](i=1,2…,n),区间[xi-1,xi]的长度Δxi=xi-xi-1,第二步:近似代替,“以直代曲”.用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和.第四步:取极限.特别提醒:最后所得曲边梯形的面积不是近似值,而是真实值.
1.求由抛物线y=x2与直线y=4所围成的平面图形的面积.
求自由落体的下落距离:已知自由落体的运动速度v=gt,求在时间区间[0,t]内物体下落的距离.
2.汽车行驶的速度为v=t2,求汽车在0≤t≤1这段时间内行驶的路程s.
【错解】 (1)分割将区间[0,1]等分为5个小区间:[0,0.2],[0.2,0.4],[0.4,0.6],[0.6,0.8],[0.8,1]每个小区间的长度为0.2,过四个分点作x轴的垂线,把曲边梯形分成5个小曲边梯形,它们的面积分别记为ΔS1,ΔS2,…,ΔS5.
【错因】 错解的原因是没有理解极限的思想.
人教版新课标A1.1变化率与导数教案配套ppt课件: 这是一份人教版新课标A1.1变化率与导数教案配套ppt课件,共41页。PPT课件主要包含了自主学习新知突破,导数的几何意义,斜率k,导函数,合作探究课堂互动,求曲线的切线方程,思路点拨,求切点坐标等内容,欢迎下载使用。
高中数学人教版新课标A选修2-21.7定积分的简单应用课堂教学ppt课件: 这是一份高中数学人教版新课标A选修2-21.7定积分的简单应用课堂教学ppt课件,共29页。PPT课件主要包含了自主学习新知突破,变速直线运动的路程,变力作功,合作探究课堂互动等内容,欢迎下载使用。
人教版新课标A选修2-21.7定积分的简单应用教案配套课件ppt: 这是一份人教版新课标A选修2-21.7定积分的简单应用教案配套课件ppt,共44页。PPT课件主要包含了自主学习新知突破,交点坐标,曲边梯形的,积分变量,被积函数,积分区间,答案C,合作探究课堂互动,分割图形面积的求解,定积分的综合应用等内容,欢迎下载使用。