高中数学教案必修三:3.4 互斥事件(1)
展开www.ks5u.com教学目标:1.了解互斥事件、对立事件的概念,2.能判断某两个事件是否是互斥事件、是否是对立事件;3.了解两个互斥事件概率的加法公式. 教学方法:谈话、启发式. 教学过程:一、问题情境体育考试的成绩分为4个等级;优、良、中、不及格.某班50名学生参加了体育考试,结果如下:问题1:在同一次考试中,某一位同学能否既得优又得良?问题2:从这个班任意抽取一位同学,那么这位同学的测试成绩为“优”的概率,为“良”的概率,为“优良”(优或良)的概率分别是多少?二、学生活动优的概率为,良的概率为.优良的概率为,是优和良的概率之和.三、建构数学体育考试成绩的等级为优、良、中、不及格的事件分别记为A,B,C,D.1.不能同时发生的两个事件称为互斥事件.2.“优良”可以表示为A+B.3.事件A,B,C,D其中任意两个都是互斥的.推广:一般地,如果事件A1,A2,…,An中的任何两个都是互斥事件,那么就说事件A1,A2,…,An 彼此互斥.若事件A,B至少有一个发生,我们把这个事件记作事件A+B.四、探索新知问题3:如果将“测试成绩合格”记为事件E, “不合格”记为D那么E 与D能否同时发生 ?他们之间还存在怎样的关系?两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A的对立事件记为.对立事件与互斥事件有何异同?1.对立事件是相对于两个互斥事件来说的 ;2.我们可用如图所示的两个图形来区分: A,B为互斥事件 A,B为对立事件3.结合集合知识,进一步认识互斥事件与对立事件:表示互斥事件与对立事件的集合的交集都是空集,但是两个对立事件集合的并集是全集,而两个互斥事件集合的并集不一定是全集.五、数学运用1.例题.例1 一只口袋内装有大小一样的4只白球和4只黑球,从中任意摸出2只球.记摸出2只白球的事件为A,摸出1只白球和1只黑球的事件为B.问:事件A与事件B是否为互斥事件?是否为对立事件?结论:3.如果事件A,B是互斥事件,那么事件A+B发生(即A,B中有一个发生)的概率,等于事件A,B分别发生的概率的和.即:P(A+B)=P(A)+P(B)4.一般地,如果事件A1,A2,…,An彼此互斥,那么事件A1+A2+…+An发生(即A1,A2,…,An中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+An) = P(A1)+P(A2)+…+P(An) .例2 某人射击1次,命中7~10环的概率如下表所示:(1)求射击1次,至少命中7环的概率;(2)求射击一次,命中不足7环的概率.注:像例2这样,在求某些稍复杂的事件的概率时,通常有两种①将所求事件的概率化成一些彼此互斥的事件的概率的和;②在直接计算某一事件的概率较复杂时,可转而求其对立事件的概率.2.练习.(1)作业:课后练习1,2.(2)对飞机连续射击两次.每次发射一枚炮弹,设A={两次都击中},B={每次都没击中},C={恰有一次击中},D={至少有一次击中},其中彼此互斥的事件是_____________________________ ; 互为对立事件的是________________. 3.某射手在一次训练射击中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环、或7环的概率;(2)不够7环的概率.六、要点归纳与方法小结:本节课学习了以下内容:1.互斥事件和对立事件的概念;2.如何判断某两个事件是否是互斥事件、是否是对立事件;3.两个互斥事件概率的加法公式.