人教A版 (2019)必修 第一册2.2 基本不等式第1课时学案设计
展开2.2 基本不等式
第1课时 基本不等式
如图,是2002年8月在北京召开的第24届国际数学家大会的会标.它依据我国著名数学家赵爽研究勾股定理的弦图进行设计,颜色的明暗使其看起来像一个风车.
问题:依据会标,你能找到一些相等或不等关系吗?
提示:由图可知
①a2+b2=(a-b)2+2ab;
②a2+b2≥2ab,当且仅当a=b时,取“=”.
基本不等式
(1)有关概念:当a,b均为正数时,把eq \f(a+b,2)叫做正数a,b的算术平均数,把eq \r(ab)叫做正数a,b的几何平均数.
(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即eq \r(ab)≤eq \f(a+b,2),当且仅当a=b时,等号成立.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)对任意a,b∈R,a2+b2≥2ab,a+b≥2eq \r(ab)均成立.( )
(2)若a≠0,则a+eq \f(1,a)≥2eq \r(a·\f(1,a))=2.( )
(3)若a>0,b>0,则ab≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))eq \s\up12(2).( )
[提示] (1)任意a,b∈R,有a2+b2≥2ab成立,当a,b都为正数时,不等式a+b≥2eq \r(ab)成立.
(2)只有当a>0时,根据基本不等式,才有不等式a+eq \f(1,a)≥2eq \r(a·\f(1,a))=2成立.
(3)因为eq \r(ab)≤eq \f(a+b,2),所以ab≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))eq \s\up12(2).
[答案] (1)× (2)× (3)√
2.不等式a2+1≥2a中等号成立的条件是( )
A.a=±1 B.a=1
C.a=-1 D.a=0
B [当a2+1=2a,即(a-1)2=0,即a=1时,“=”成立.]
3.已知0<a<1,0<b<1,且a≠b,下列各式中最大的是( )
A.a2+b2 B.2eq \r(ab)
C.2ab D.a+b
D [∵0<a<1,0<b<1,∴a2<a,b2<b,
∴a2+b2<a+b,又a2+b2>2ab(∵a≠b),
∴2ab<a2+b2<a+b.
又∵a+b>2eq \r(ab)(∵a≠b),∴a+b最大.]
4.当a,b∈R时,下列不等关系成立的是________(填序号).
①eq \f(a+b,2)≥eq \r(ab);②a-b≥2eq \r(ab);③a2+b2≥2ab;④a2-b2≥2ab.
③ [根据eq \f(a2+b2,2)≥ab,eq \f(a+b,2)≥eq \r(ab)成立的条件判断,知①②④错,只有③正确.]
【例1】 给出下面四个推导过程:
①∵a,b为正实数,∴eq \f(b,a)+eq \f(a,b)≥2eq \r(\f(b,a)·\f(a,b))=2;
②∵a∈R,a≠0,∴eq \f(4,a)+a≥2eq \r(\f(4,a)·a)=4;
③∵x,y∈R,xy<0,∴eq \f(x,y)+eq \f(y,x)=-eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,y)))+\b\lc\(\rc\)(\a\vs4\al\c1(-\f(y,x)))))≤-2eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,y)))\b\lc\(\rc\)(\a\vs4\al\c1(-\f(y,x))))=-2.
其中正确的推导为( )
A.①② B.①③
C.②③ D.①②③
B [①∵a,b为正实数,∴eq \f(b,a),eq \f(a,b)为正实数,符合基本不等式的条件,故①的推导正确.
②∵a∈R,a≠0,不符合基本不等式的条件,
∴eq \f(4,a)+a≥2eq \r(\f(4,a)·a)=4是错误的.
③由xy<0,得eq \f(x,y),eq \f(y,x)均为负数,但在推导过程中将整体eq \f(x,y)+eq \f(y,x)提出负号后,eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,y))),eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(y,x)))均变为正数,符合基本不等式的条件,故③正确.]
1.基本不等式eq \r(ab)≤eq \f(a+b,2) (a>0,b>0)反映了两个正数的和与积之间的关系.
2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a,b都是正数.(2)“当且仅当”的含义:当a=b时,eq \r(ab)≤eq \f(a+b,2)的等号成立,即a=b⇒eq \f(a+b,2)=eq \r(ab);仅当a=b时,eq \f(a+b,2)≥eq \r(ab)的等号成立,即eq \f(a+b,2)=eq \r(ab)⇒a=b.
eq \([跟进训练])
1.下列不等式的推导过程正确的是________.
①若x>1,则x+eq \f(1,x)≥2eq \r(x·\f(1,x))=2.
②若x<0,则x+eq \f(4,x)=-eq \b\lc\[\rc\](\a\vs4\al\c1(-x+\b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,x)))))
≤-2eq \r(-x·\b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,x))))=-4.
③若a,b∈R,则eq \f(b,a)+eq \f(a,b)≥2eq \r(\f(b,a)·\f(a,b))=2.
② [ ①中忽视了基本不等式等号成立的条件,当x=eq \f(1,x)时,即x=1时,x+eq \f(1,x)≥2等号成立,因为x>1,所以x+eq \f(1,x)>2,③中忽视了利用基本不等式时每一项必须为正数这一条件.]
【例2】 (1)已知a,b∈R+,则下列各式中不一定成立的是( )
A.a+b≥2eq \r(ab) B.eq \f(b,a)+eq \f(a,b)≥2
C.eq \f(a2+b2,\r(ab))≥2eq \r(ab) D.eq \f(2ab,a+b)≥eq \r(ab)
(2)已知a,b,c是两两不等的实数,则p=a2+b2+c2与q=ab+bc+ca的大小关系是________.
(1)D (2)a2+b2+c2>ab+bc+ac [(1)由eq \f(a+b,2)≥eq \r(ab)得a+b≥2eq \r(ab),
∴A成立;
∵eq \f(b,a)+eq \f(a,b)≥2eq \r(\f(b,a)·\f(a,b))=2,∴B成立;
∵eq \f(a2+b2,\r(ab))≥eq \f(2ab,\r(ab))=2eq \r(ab),∴C成立;
∵eq \f(2ab,a+b)≤eq \f(2ab,2\r(ab))=eq \r(ab),∴D不一定成立.
(2)∵a,b,c互不相等,
∴a2+b2>2ab,b2+c2>2bc,a2+c2>2ac.
∴2(a2+b2+c2)>2(ab+bc+ac).
即a2+b2+c2>ab+bc+ac.]
1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件.
2.运用基本不等式比较大小时应注意成立的条件,即a+b≥2eq \r(ab)成立的条件是a>0,b>0,等号成立的条件是a=b;a2+b2≥2ab成立的条件是a,b∈R,等号成立的条件是a=b.
eq \([跟进训练])
2.如果0<a<b<1,P=eq \f(a+b,2),Q=eq \r(ab),M=eq \r(a+b),那么P,Q,M的大小顺序是( )
A.P>Q>M B.M>P>Q
C.Q>M>P D.M>Q>P
B [显然eq \f(a+b,2)>eq \r(ab),又因为eq \f(a+b,2)<eq \r(a+b)(由a+b>eq \f(a+b2,4)也就是eq \f(a+b,4)<1可得),所以eq \r(a+b)>eq \f(a+b,2)>eq \r(ab).故M>P>Q.]
【例3】 已知a,b,c是互不相等的正数,且a+b+c=1,求证:eq \f(1,a)+eq \f(1,b)+eq \f(1,c)>9.
[思路点拨] 看到eq \f(1,a)+eq \f(1,b)+eq \f(1,c)>9,想到将“1”换成“a+b+c”,裂项构造基本不等式的形式,用基本不等式证明.
[证明] ∵a,b,c∈R+,且a+b+c=1,
∴eq \f(1,a)+eq \f(1,b)+eq \f(1,c)=eq \f(a+b+c,a)+eq \f(a+b+c,b)+eq \f(a+b+c,c)
=3+eq \f(b,a)+eq \f(c,a)+eq \f(a,b)+eq \f(c,b)+eq \f(a,c)+eq \f(b,c)
=3+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(b,a)+\f(a,b)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,a)+\f(a,c)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,b)+\f(b,c)))
≥3+2eq \r(\f(b,a)·\f(a,b))+2eq \r(\f(c,a)·\f(a,c))+2eq \r(\f(c,b)·\f(b,c))
=3+2+2+2
=9.
当且仅当a=b=c时取等号,∴eq \f(1,a)+eq \f(1,b)+eq \f(1,c)>9.
本例条件不变,求证:eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,b)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,c)-1))>8.
[证明] ∵a,b,c∈R+,
且a+b+c=1,
∴eq \f(1,a)-1=eq \f(b+c,a)>0,eq \f(1,b)-1=eq \f(a+c,b)>0,eq \f(1,c)-1=eq \f(a+b,c)>0,∴eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,b)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,c)-1))
=eq \f(b+c,a)·eq \f(a+c,b)·eq \f(a+b,c)≥eq \f(2\r(bc)·2\r(ac)·2\r(ab),abc)=8,当且仅当a=b=c时取等号,
∴eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,b)-1))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,c)-1))>8.
1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.
2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.
eq \([跟进训练])
3.已知x,y,z都是正数,求证:
(x+y)(y+z)(z+x)≥8xyz.
[证明] ∵x,y,z都是正数,
∴x+y≥2eq \r(xy),y+z≥2eq \r(yz),z+x≥2eq \r(zx),
∴(x+y)(y+z)(z+x)≥2eq \r(xy)·2eq \r(yz)·2eq \r(zx)=8xyz.
当且仅当x=y=z时,等号成立.
4.已知a>1,b>0,eq \f(1,a)+eq \f(3,b)=1,求证:a+2b≥2eq \r(6)+7.
[证明] 由eq \f(1,a)+eq \f(3,b)=1,得b=eq \f(3a,a-1)(a>1),
则a+2b=a+eq \f(6a,a-1)=a+eq \f(6a-1+6,a-1)
=a+eq \f(6,a-1)+6=(a-1)+eq \f(6,a-1)+7≥2eq \r(6)+7,
当a-1=eq \f(6,a-1)时,即a=1+eq \r(6)时,取等号.
1.记牢2个不等式
(1)a2+b2≥2ab;(2)eq \f(a+b,2)≥eq \r(ab)(a,b都是正数).
2.掌握2个注意点
利用基本不等式证明不等式时应关注两点:
(1)应用基本不等式时要时刻注意其成立的条件,只有当a>0,b>0时,才会有eq \r(ab)≤eq \f(a+b,2).对于“当且仅当……时,‘=’成立”这句话要从两个方面理解:一方面,当a=b时,eq \f(a+b,2)=eq \r(ab);另一方面,当eq \f(a+b,2)=eq \r(ab)时,也有a=b.
(2)应用基本不等式证明不等式的关键在于进行“拼”“凑”“拆”“合”“放缩”等变形,构造出符合基本不等式的条件结构.
1.设a>b>0,则下列不等式中一定成立的是( )
A.a-b<0 B.0
C.eq \r(ab)
C [∵a>b>0,由基本不等式知eq \r(ab)
2.不等式eq \f(9,x-2)+(x-2)≥6(其中x>2)中等号成立的条件是( )
A.x=3 B.x=-3
C.x=5 D.x=-5
C [由基本不等式知等号成立的条件为eq \f(9,x-2)=x-2,即x=5(x=-1舍去).]
3.若0<a<b且a+b=1,则下列四个数中最大的是( )
A.eq \f(1,2) B.a2+b2
C.2ab D.a
B [a2+b2=(a+b)2-2ab≥(a+b)2-2·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))eq \s\up12(2)=eq \f(1,2).
a2+b2-2ab=(a-b)2≥0,∴a2+b2≥2ab.
∵0<a<b且a+b=1,∴a<eq \f(1,2).
∴a2+b2最大.]
4.若x>0,则x+eq \f(1,x)________2(填“=”“≥”“≤”“>”“<”).
≥ [x>0时,x+eq \f(1,x)≥2eq \r(x·\f(1,x))=2,当且仅当x=eq \f(1,x),即x=1时取等号.]
5.设a>0,b>0,证明:eq \f(b2,a)+eq \f(a2,b)≥a+b.
[证明] ∵a>0,b>0,
∴eq \f(b2,a)+a≥2b,eq \f(a2,b)+b≥2a,
∴eq \f(b2,a)+eq \f(a2,b)≥a+b.
学 习 目 标
核 心 素 养
1.了解基本不等式的证明过程.(重点)
2.能利用基本不等式证明简单的不等式及比较代数式的大小.
1.通过不等式的证明,培养逻辑推理素养.
2.借助基本不等式形式求简单的最值问题,提升数学运算素养.
对基本不等式的理解
利用基本不等式比较大小
利用基本不等式证明不等式
高中数学人教A版 (2019)必修 第一册4.1 指数第1课时导学案及答案: 这是一份高中数学人教A版 (2019)必修 第一册4.1 指数第1课时导学案及答案,共6页。
高中数学第三章 函数概念与性质3.2 函数的基本性质第1课时导学案: 这是一份高中数学第三章 函数概念与性质3.2 函数的基本性质第1课时导学案,共9页。
人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案及答案: 这是一份人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案及答案,共10页。