所属成套资源:人教版数学八年级上册各个单元测试卷
人教版八年级上册第十一章 三角形综合与测试课时练习
展开
这是一份人教版八年级上册第十一章 三角形综合与测试课时练习,共13页。试卷主要包含了下列四个图形,具有稳定性的有,下列三条线段不能构成三角形的是,下列说法中,正确的是等内容,欢迎下载使用。
一.选择题(共10小题,满分30分,每小题3分)
1.下列四个图形,具有稳定性的有( )
A.1个B.2个C.3个D.4个
2.下列三条线段不能构成三角形的是( )
A.4cm、2cm、5cmB.3cm、3cm、5cm
C.2cm、4cm、3cmD.2cm、2cm、6cm
3.图中的三角形被木板遮住了一部分,这个三角形是( )
A.锐角三角形B.直角三角形
C.钝角三角形D.以上都有可能
4.如图,四个图形中,线段BE是△ABC的高的图是( )
A.B.C.D.
5.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为( )
A.40°B.45°C.50°D.60°
6.下列说法中,正确的是( )
A.三角形的中线就是过顶点平分对边的直线
B.三角形的高就是顶点到对边的垂线
C.三角形的角平分线就是三角形的内角平分线
D.三角形的三条中线交于一点
7.一个正多边形,它的一个内角恰好是一个外角的4倍,则这个正多边形的边数是( )
A.八B.九C.十D.十二
8.以下关于多边形内角和与外角和的表述,错误的是( )
A.四边形的内角和与外角和相等
B.如果一个四边形的一组对角互补,那么另一组对角也互补
C.六边形的内角和是外角和是2倍
D.如果一个多边形的每个内角是120°,那么它是十边形.
9.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=( )
A.45°B.54°C.56°D.66°
10.如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有( )对.
A.8B.16C.24D.32
二.填空题(共8小题,满分32分,每小题4分)
11.自行车的主框架采用了三角形结构,这样设计的依据是三角形具有 .
12.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C= .
13.已知直角三角形ABC中,∠A=(2x﹣10)°,∠B=(3x)°,则x= .
14.若三条长度分别为3cm,8cm,xcm(x为正整数)的线段可以围成一个三角形,则x的值可能为 .
15.如图,在正六边形ABCDEF中,∠CAD的度数为 .
16.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为 .
17.如图,在锐角三角形ABC中,CD和BE分别是AB和AC边上的高,且CD和BE交于点P,若∠A=40°,则∠BPC的度数是 .
18.AD是△ABC边BC上的中线,AB=5cm,AC=3cm,△ABD与△ACD的周长之差为 .
三.解答题(共6小题,满分38分)
19.(5分)如图,∠DEA=90°,∠MDE=100°,∠GBC=65°,∠DCH=50°,求∠EAB的度数.
20.(5分)△ABC中,AB:AC=3:2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成两部分的比是8:7,求边AB,AC的长.
21.(6分)如图所示:
求∠A+∠D+∠B+∠E+∠C+∠F的度数.
22.(7分)如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.
(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;
(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.
23.(7分)阅读与推理
【阅读】三角形外角定理:三角形的外角等于与它不相邻的两个内角的和.例如在图中,∠ACD是△ABC的一个外角,则有∠ACD=∠A+∠B.
小明在课外书上看到这样一题:
“在五角星形ABCD中,求∠A+∠B+∠C+∠D+∠E的度数”.
小明思考:∠AFG是△FEC的外角,
根据“三角形外角定理”,可得∠AFE=∠ +∠ .
类似的,∠AGF是△BGD的外角,可得∠AGF=∠ +∠ .
小明已经有了解题思路,请你帮助他将这道题完整解答.
24.(8分)在△ABC中,BD是△ABC的角平分线,点E在射线DC上,EF⊥BC于点F,EM平分∠AEF交直线AB于点M.
(1)如图1,点E在线段DC上,若∠A=90°,∠M=α.
①∠AEF= ;(用含α的式子表示)
②求证:BD∥ME;
(2)如图2,点E在DC的延长线上,EM交BD的延长线于点N,用等式表示∠BNE与∠BAC的数量关系,并证明.
参考答案
一.选择题(共10小题,满分30分,每小题3分)
1.解:第一个图形为个三角形,具有稳定性,
第二个图形是四边形,不具有稳定性;
第三个图形中左侧含有一个四边形,不具有稳定性;
第四个图形被分成了三个三角形,具有稳定性,
所以具有稳定性的有2个.
故选:B.
2.解:A、4+2>5,能够组成三角形,不符合题意;
B、3+3>5,能够组成三角形,不符合题意;
C、3+2>4,能组成三角形,不符合题意;
D、2+2<6,不能够组成三角形,符合题意.
故选:D.
3.解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.
故选:D.
4.解:过点B作AC边上的高,垂足为E,则
线段BE是△ABC的高的图是选项C.
故选:C.
5.解:∵直角三角形中,一个锐角等于40°,
∴另一个锐角的度数=90°﹣40°=50°.
故选:C.
6.解:A.三角形的中线就是一边的中点与此边所对顶点的连线,故本选项错误;
B.三角形的高就是顶点到对边的垂线段,故本选项错误;
C.三角形的角平分线就是三角形的内角平分线与这个内角的对边的交点与这个内角的顶点之间的线段,故本选项错误;
D.三角形的三条中线交于一点,本故选项正确;
故选:D.
7.解:设多边形的一个外角为x,则它的一个内角为4x,
4x+x=180°,
∴x=36°
∴这个正n边形的边数为:360°÷36°=10,
故选:C.
8.解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述正确;
B.如果一个四边形的一组对角互补,那么另一组对角也互补,故本选项表述正确;
C.六边形的内角和为720°,外角和为360°,所以六边形的内角和是外角和是2倍,故本选项表述正确;
D.如果一个多边形的每个内角是120°,那么它是六边形,故原表述错误.
故选:D.
9.解:∵AD是△ABC的高,
∴∠ADB=90°,
∵∠BAD=42°,
∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,
∵BE是△ABC的角平分线,
∴∠ABF=∠ABD=24°,
∴∠BFD=∠BAD+∠ABF=42°+24°=66°,
故选:D.
10.解:以AB为公共边的三角形有:△ABD和△ABC;
以AC为公共边的三角形有:△ACE和△ACB;
以AD为公共边的三角形有:△ADE和△ABD;
以AE为公共边的三角形有:△AED和△AEC;
以BC为公共边的三角形有:△BCO和△BCA和△BCD和△BCE,4个三角形中任何两个都是共边三角形,有6对;
以BD为公共边的三角形有:△BDC,△BDE,BDA任何两个都是3对共边三角形;
以BE为公共边的三角形有:△BEO,△BED,△BEC任何两个都是3对共边三角形.
以OB为公共边的三角形有:△OBE和△OBC;
以CD为公共边的三角形有:△CDO和△CDB和△CDE任何两个都是3对共边三角形.
以CE为公共边的三角形有:△CED,△CEA,△CEB任何两个都是3对共边三角形;
以CO为公共边的三角形有:△COD和△COB;
以DE为公共边的三角形有:△AED和△OED和△BED和三角CED,4个三角形中任何两个都是共边三角形,有6对;
以OD为公共边的三角形有:△ODC和△ODE;
以OE为公共边的三角形有:△OBE和△ODE.
共32对.
故选:D.
二.填空题(共8小题,满分32分,每小题4分)
11.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,
故答案为:稳定性.
12.解:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.
故答案为:80°.
13.解:①若∠C=90°,则∠A+∠B=90°,
∴2x﹣10+3x=90,
解得x=20,
此时∠A=30°,∠B=60°,符合题意;
②若∠A=90°,则2x﹣10=90,
解得x=50,
此时∠B=150°,不符合题意,舍去;
③若∠B=90°,则3x=90,
解得x=30,
此时∠A=50°,符合题意;
综上x=20或30,
故答案为:20或30.
14.解:依题意得:8﹣3<x<8+3,
即5<x<11,
∵x为正整数,
∴x的值可能为6,7,8,9,10,
故答案为:6,7,8,9,10.
15.解:正六边形的每个内角为:,
∴,
∵六边形是轴对称图形,
∴,
∴∠CAD=∠BAD﹣∠BAC=30°.
故答案为:30°.
16.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,
∵∠A=55°,
∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,
∴∠A′DB=180°﹣140°=40°,
故答案为40°.
17.解:∵∠A=40°,CD⊥AB,
∴∠ACD=50°,
∵BE⊥AC,
∴∠CEP=90°,
∵∠BPC为△CPE的外角,
∴∠BPC=140°.
故答案为:140°.
18.解:∵AD是△ABC中BC边上的中线,
∴BD=DC=BC,
∴△ABD和△ADC的周长的差
=(AB+BC+AD)﹣(AC+BC+AD)
=AB﹣AC
=5﹣3
=2(cm).
故答案为:2cm.
三.解答题(共6小题,满分38分)
19.解:∵∠DEA=90°,
∴∠AEN=90°,
又∵∠EAF+∠AEN+∠MDE+∠GBC+∠DCH=∠EAF+90°+100°+65°+50°=360°,
∴∠EAF=55°,
又∵∠EAB+∠EAF=180°,
∴∠EAB=180°﹣∠EAF=125°.
20.解:设AB=3x,AC=2x,则BC=2x+1,由题意得:
①3x+x=(3x+2x+2x+1)×,
解得:x=2,
则:AB=6,AC=4;
②3x+x=(3x+2x+2x+1)×,
解得:x=,
则:AB=,AC=,
答:①边AB长为6,AC的长为4;②边AB长为,AC的长为.
21.解:由图可得,
∠A+∠D+∠B+∠E+∠C+∠F的和正好是中间小三角形的三个外角之和,
∵三角形的外角和是360°,
∴∠A+∠D+∠B+∠E+∠C+∠F=360°.
22.(1)解:∵∠C=40°,∠B=2∠C,
∴∠B=80°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠EAC=30°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC=50°,
∴∠DAE=50°﹣30°=20°;
(2)证明:∵EF⊥AE,
∴∠AEF=90°,
∴∠AED+∠FEC=90°,
∵∠DAE+∠AED=90°,
∴∠DAE=∠FEC,
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,
∵∠DAE=∠DAC﹣∠EAC,
∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,
∴∠FEC=C,
∴∠C=2∠FEC.
23.解:在△CEF中,可得∠AFE=∠C+∠E,
在△BDG中,可得,AGF=∠B+∠D,
∴∠A+∠B+∠C+∠D+∠E=∠AFG+AGF+∠A=180°;
故答案为:E,C,B,D.
24.解:(1)①∵∠A=90°,∠M=α,
∴∠AEM=180°﹣90°﹣α=90°﹣α,
∵EM平分∠AEF,
∴∠AEF=2∠AEM=180°﹣2α,
故答案为:180°﹣2α;
②证明:∵EF⊥BC,
∴∠EFC=90°,
∵∠A=90°,
∴∠C+∠ABC=90°,
∴∠CEF=∠ABC,
∵∠AEF=180°﹣2α,
∴∠CEF=2α,
∴∠ABC=2α,
∵BD是△ABC的角平分线,
∴∠ABD=ABC=α,
∴∠ABD=∠M,
∴BD∥ME;
(2)2∠BNE=90°+∠BAC,
证明:∵BD平分∠ABC,EM平分∠AEF,
设∠ABD=x,∠AEM=y,
∴∠ABC=2x,∠AEF=2y,
∵∠ABD+∠BAD=180°﹣∠ADB,
∠NED+∠END=180°﹣∠NDE,
∵∠ADB=∠NDE,
∴∠ABD+∠BAD=∠NED+∠END,
∴x+∠BAD=y+∠END,
∴x﹣y=∠END﹣∠BAD,
同理,∠ABC+∠BAC=∠FEC+∠EFC,
∴2x+∠BAC=2y+∠EFC,
∴2x﹣2y=∠EFC﹣∠BAC,
∵EF⊥BC,
∴∠EFC=90°,
∴2(x﹣y)=90°﹣∠BAC,
∴2(∠END﹣∠BAD)=90°﹣∠BAC,
即2(∠BNE﹣∠BAC)=90°﹣∠BAC,
∴2∠BNE=90°+∠BAC.
相关试卷
这是一份初中数学苏科版八年级上册1.2 全等三角形精品精练,共36页。试卷主要包含了下列说法正确的是,如图已知中,,,,点为的中点等内容,欢迎下载使用。
这是一份苏科版八年级上册1.2 全等三角形巩固练习
这是一份浙教版八年级上册第2章 特殊三角形综合与测试精品课时练习,文件包含浙教版数学八上同步提高第2章特殊三角形章末复习原卷版docx、浙教版数学八上同步提高第2章特殊三角形章末复习答案版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。