|课件下载
搜索
    上传资料 赚现金
    人教版数学八年级上册 第十三章 轴对称(复习课件)
    立即下载
    加入资料篮
    人教版数学八年级上册  第十三章 轴对称(复习课件)01
    人教版数学八年级上册  第十三章 轴对称(复习课件)02
    人教版数学八年级上册  第十三章 轴对称(复习课件)03
    人教版数学八年级上册  第十三章 轴对称(复习课件)04
    人教版数学八年级上册  第十三章 轴对称(复习课件)05
    人教版数学八年级上册  第十三章 轴对称(复习课件)06
    人教版数学八年级上册  第十三章 轴对称(复习课件)07
    人教版数学八年级上册  第十三章 轴对称(复习课件)08
    还剩52页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学八年级上册 第十三章 轴对称(复习课件)

    展开
    这是一份人教版数学八年级上册 第十三章 轴对称(复习课件),共60页。

    章节复习第十三章 轴对称知识结构知 识 点本章考点考点专练学习目标1.总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2.培养学生用轴对称的观点认识线段的垂直平分线、角的平分线、等腰三角形等几何图形;3.归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力. 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.一、轴对称相关定义和性质 像这样,把一个图形沿着某一条直线折叠,如果它能与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.AA’一、轴对称相关定义和性质图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 如下图中,l垂直平分AA′,l垂直平分BB′.一、轴对称相关定义和性质垂直平分线的定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.l⊥AB,垂足为O,且AO=BO,则l是线段AB的垂直平分线.二、垂直平分线的定义、性质、判定线段的垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等.几何符号语言:∵ PC⊥AB,PC平分AB∴ PA=PB二、垂直平分线的定义、性质、判定与线段两个端点距离相等的点在这条线段的垂直平分线上.线段的垂直平分线的判定:几何符号语言:∵ PA=PB∴ 点P在AB的垂直平分线上二、垂直平分线的定义、性质、判定 在平面直角坐标系中,关于 x 轴对称的点横坐标_____,纵坐标___________;关于 y 轴对称的点横坐标___________,纵坐标_____. 点( x ,y )关于 x 轴对称的点的坐标为(___,___) 点( x ,y )关于 y 轴对称的点的坐标为(___,___)相等互为相反数互为相反数相等x -y -x y 三、用坐标表示轴对称性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)四、等腰三角形的性质及判定等腰三角形判定定理: 如果一个三角形有两个角相等,那么这两个角所对的边也相等 (简写成“等角对等边”).四、等腰三角形的性质及判定等边三角形的性质:1.等边三角形的三边相等.2.等边三角形的三个内角都相等,并每一个角都等于60°.3.等边三角形的三条高线,三条中线,三条角平分线,分别互相重合.4.等边三角形是轴对称图形,有三条对称轴.五、等边三角形的性质及判定等边三角形的判定方法:1.三边相等的三角形是等边三角形.2.三个角都相等的三角形是等边三角形.3.有一个角是60°的等腰三角形是等边三角形.五、等边三角形的性质及判定含30°角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.六、含30°角的直角三角形的性质在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.七、最短路径问题例1.在下列各电视台的台标图案中(不考虑颜色),是轴对称图形的是( )B例2.将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是(  )B  【1-1】“羊”字象征着美好和吉祥,下图都与“羊”字有关,其中是轴对称图形的个数是( ) A.1 B.2 C.3 D.4B【1-2】如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A'DB的度数为______.10° B例4.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5;(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2016=1.例5.如图,在直角坐标系中,A(0, 5),B(-2,0),C(-3,3).(1)在直角坐标系中作出△ABC关于x轴对称的△A'B'C',并相应写出△A'B'C'三个顶点的坐标;(2)将△A'B'C'沿x轴方向向右平移3个单位后得到△A"B"C",并相应写出△A"B"C"三个顶点的坐标.解:(1)如图,△A'B'C'为所求,A'(O,-5), B'(-2,0),C'(-3,-3);(2)如图,△A"B"C"为所求,A"(3,-5),B"(1,0),C"(0,-3).【2-1】已知点P (3, -1)关于y轴的对称点Q的坐标是(a+b, 1-b),则ab的值为_____.25【2-2】如图,在平面直角坐标系中,对△ABC进行循环反复的轴对称变换,若原来点A坐标是(a, b),则经过第2022次变换后所得的A点坐标是__________.(-a,-b)【2-3】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若△ABC与△A'B'C'关于x轴对称,画出△A'B'C',并写出A'、B'、C'的坐标.A (0,4)B (2,4)C (3,-1)A' (0,-4)B' (2,-4)C' (3,1)解:如图所示:例6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.例6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.      【3-1】如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为(     )A.5 B.10 C.12 D.13C【3-2】如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=7∠BAE,则∠C的度数为(  )A.41° B.42° C.43° D.44°B A例8.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.解:设∠A=x,∵AD=DE=BE ∴∠DEA=∠A=x,∠EBD=∠EDB∵∠DEA=∠EBD+∠EDB ∴∠EBD=∠EDB=0.5x∴∠BDC=∠A+∠ABD=x+0.5x=1.5x∵BC=BD,AB=AC ∴∠BDC=∠BCD=∠ABC=1.5x在△ABC中,∠A+∠ABC+∠C=180°即x+1.5x+1.5x=180°解得x=45°,即∠A=45°  例10.如图,点E在△ABC的AC边的延长线上,点D在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.证明:如图,过点D作DG//AE交BC于点G.∴∠GDF=∠CEF在△GDF和△CEF中,∴△GDF≌△CEF(ASA)∴GD=CE又∵BD=CE例10.如图,点E在△ABC的AC边的延长线上,点D在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.∴BD=DG∴∠DBG=∠DGB∵DG//AC∴∠DGB=∠ACB∴∠ABC=∠ACB∴AB=AC,即△ABC是等腰三角形【4-1】等腰三角形的一个角等于20°,则另外两个内角分别为( )A.20°、140° B.20°、140°或80°、80°C.80°、80° D.20°、80°B【4-2】如图(4),是一钢架,∠AOB=10°,为使钢架更加坚固,需在内部添加一些钢管EF、FM、MH……添加的钢管长度都与OE相等,则最多能添加这样的钢管_____根.8【4-3】如图,在△ABC中,AD平分∠BAC,且D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F.求证:△ABC是等腰三角形.   ∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,又∵点G是BD的中点,∴DG=BG,∴CF=2DE. 例11.△ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.又∵BM=CN,∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.例12.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.解:△APQ为等边三角形.证明如下:∵△ABC为等边三角形, ∴AB=AC.∵BP=CQ,∠ABP=∠ACQ, ∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°∴∠PAQ=∠CAQ+∠PAC=60°∴△APQ是等边三角形.例13.图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形 (1)如图①,线段AN与线段BM是否相等?请说明理由;(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.解:(1)AN=BM.理由:∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠ACN=∠MCB.∴△ACN≌△MCB(SAS).∴AN=BM.(1)如图①,线段AN与线段BM是否相等?请说明理由;(2)△CEF是等边三角形.证明:∵∠ACE=∠FCM=60°,∴∠ECF=60°.∵△ACN≌△MCB,∴∠CAE=∠CMB.∵AC=MC,∴△ACE≌△MCF(ASA),∴CE=CF. ∴△CEF是等边三角形.(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.【5-1】如图,等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′ ,EB′分别交AC于点F,G,若∠ADF=80°,则∠EGC的度数为______.80°【5-2】如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.证明:∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是等边三角形.【5-3】如图,△ABC是等边三角形,∠ABC、∠ACB的平分线交于点O,OM∥AB,ON∥AC.求证:BM=MN=CN.证明:∵△ABC是等边三角形∴∠ABC=60°又∵OB平分∠ABC∴∠1=∠2=30°又∵OM//AB∴∠1=∠3∴∠2=∠3=30°∴BM=OM,∠OMN=60°同理CN=ON,∠ONM=60°∴∠OMN=∠ONM=∠MON=60°∴OM=ON=MN ∴BM=MN=CN例14.如图,在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.证明:连接AF.∵EF是AC的垂直平分线∴AF=CF∴∠C=∠FAC∵AB=AC,∠BAC=120°∴∠B=∠C=∠FAC=30°∴∠BAF=120°-30°=90°∴BF=2AF ∴BF=2CF例15.如图,等边△ABC的边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF?  例15.如图,等边△ABC的边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF? 例16.已知,如图,△ABC为等边三角形,点E在AC边上,点D在BC边上,并且AE=CD,AD和BE相交于点M,BN⊥AD于N.(1)求证:BE=AD;(2)求∠BMN的度数;(3)若MN=3cm,ME=1cm,则AD=   cm.例16.已知,如图,△ABC为等边三角形,点E在AC边上,点D在BC边上,并且AE=CD,AD和BE相交于点M,BN⊥AD于N.(1)求证:BE=AD; 例16.已知,如图,△ABC为等边三角形,点E在AC边上,点D在BC边上,并且AE=CD,AD和BE相交于点M,BN⊥AD于N.(2)求∠BMN的度数; 例16.已知,如图,△ABC为等边三角形,点E在AC边上,点D在BC边上,并且AE=CD,AD和BE相交于点M,BN⊥AD于N.(3)若MN=3cm,ME=1cm,则AD=   cm. 【6-1】如图(3),∠BAC=30°,AM是∠BAC的平分线,过点M作ME∥BA交AC于点E,作MD⊥BA,垂足为D,ME=10cm,则MD=_____cm.【6-2】将一副三角尺按如图(4)所示方式叠放在一起,若AB=16cm,则阴影部分的面积是_____cm2.532【6-3】如图,点D在线段BC上,连接AD,BD=CD,CA⊥AD,∠1=30°,AB=4,求AC的长. 【6-4】如图,在Rt△ABC中,∠C=90°, ∠BAC=60°,∠BAC的平分线AM长为15cm,求BC的长. 例17.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为(  )A.7.5 B.5 C.4 D.不能确定 解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.B例18.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是(  )A.(0,3) B.(0,2) C.(0,1) D.(0,0) 解析:作B点关于y轴对称点B′,连接AB′,交y轴于点C′,此时△ABC的周长最小,然后依据点A与点B′的坐标可得到BE、AE的长,然后证明△B′C′O为等腰直角三角形即可.B′C′EA例19.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?例19.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.理由:由平移的性质可知,AD//FD′,AD=FD′.同理,BE=GE′.由两点之间线段最短可知,GF最小.【7-1】如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )D【7-2】如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )A.BC B.CE C.AD D.ACB【7-3】如图,如果A,B两地之间有两条平行的河流,现要在河上分别建一座桥,且建的桥都是与河岸垂直的.桥建在何处才能使从A到B的路径最短?(保留作图痕迹,不写作法)解:如图所示,点M、N、P、Q为所求,AMNPQB路径最短.【7-4】如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.解:如图,依题意,分别作点P关于ON、OM的对称点P1、P2,连接P1P2交ON于点B,交OM于点A,依次连接A、B、P,此时△PAB的周长为最小值.【7-4】如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.由四边形内角和360°可得:∠P1PP2=360°-90°-90°-40°=140°∵BP=BP1,AP=AP2. ∴∠P1=∠BPP1,∠P2=∠APP2∵∠P1+∠P2=180°-140°=40°∴∠BPP1+ ∠APP2=40°∴∠APB=∠P1PP2-∠BPP1-∠APP2=100°课程结束
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版数学八年级上册 第十三章 轴对称(复习课件)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map