资料中包含下列文件,点击文件名可预览资料内容
还剩29页未读,
继续阅读
所属成套资源:新人教a版数学必修第一册PPT课件+分层作业(含解析)
成套系列资料,整套一键下载
4.1.1 n次方根与分数指数幂PPT+分层作业+答案解析
展开
人教A版2019必修第一册4.1.1 n次方根与分数指数幂第 4章 指数函数与对数函数目 录1 学习目标2 新课讲解3 课本例题4 课本练习5 题型分类讲解6 随堂检测7 课后作业学习目标1.理解n次方根及根式的概念,掌握根式的性质.(重点)2.能利用根式的性质对根式进行运算.(重点、难点、易错点)3.理解分数指数幂的含义,掌握根式与分数指数幂的互化.(重点、难点) 希帕索斯根据初中所学知识,思考一下边长为1的正方形的对角线长是如何计算出来的呢?【提示】根据勾股定理正方形的对角线长为 .导入新课 为了研究指数函数,我们需要把指数的范围拓展到全体实数. 初中已经学过整数指数幂。在学习幂函数时,我们把正方形场地的边长c关于面积S的函数 记作 . 像 这样以分数为指数的幂,其意义是什么呢?下面从已知的平方根、立方根的意义人手展开研究. 我们知道: 如果 ,那么 x 叫做 a 的平方根. 例如,±2就是4的平方根; 如果 ,那么 x 叫做 a 的立方根。例如,2就是8的立方根. 类似地,由于 ,我们把±2叫做16的4次方根;由于 ,2叫做32的5次方根. 1. n次方根的概念我们知道,如果x2=a,那么x叫做a的平方根. 例如,±2就是4的平方根. 如果x3=a,那么x叫做a的立方根. 如2就是8的立方根. 类似地,由于(±2)4=16,我们把±2叫做16的4次方根. 由于25=32,所以2叫做32的5次方根.一般地,如果xn=a,那么x叫做a的n次方根. 其中n>1,且n∈N*. 新课讲解2. n次方根的性质 【3】 负数没有偶次方根.【4】 0的任何次方根都是0.记作: 因为在实数的定义里,任意实数的偶次方是非负数. 因此负数没有偶次方根. 3. 根式的概念 根指数被开方数 ①当n为奇数时, ②当n为偶数时, 不一定总结: 注意:当n为偶数时,a≥0;当n为奇数时,a∈R. 解: 思考 当根式的被开方数的指数不能被根指数整除时,根式是否也能表示为分数指数幂的形式呢?事实上,任何一个根式都可以表示为分数指数幂的形式,例如: 4.分数指数幂规定正数的正分数指数幂的意义是: 规定正数的负分数指数幂的意义是: 例如, 规定0的正分数指数幂等于0,0的负分数指数幂没意义. 5.分数指数幂的运算性质 ②当a<0,b<0时运算法则不一定成立. 只有当a>0,b>0时运算法则才一定成立. 注意:①法则的逆用: 同底数幂相除,底数不变,指数相减 解: 解: 例4 计算下式各式(式中字母均是正数).解:1. 用根式的形式表示下列各式(a>0).解:2. 用分数指数幂的形式表示并计算下列各式. 解:课本练习3. 计算下列各式.解:3. 计算下列各式.解:题型分类讲解题型一:n次方根的概念问题2425随堂检测1、n次方根和根式的概念。2.当n为奇数时,a的n次方根是当n为偶数时,正数a的n次方根是 负数没有偶次方根。3.0的任何次方根都是0当n是奇数时, 当n是偶数时, 课堂小结4.分数指数概念(a>0,m,n∈N*, n>1)5.有理指数幂运算性质(3)0的正分数指数幂为0,0的负分数指数幂没有意义.
相关资料
更多