初中数学苏科版九年级上册第1章 一元二次方程1.1 一元二次方程课时练习
展开懂得运用一元二次方程解决有关变化率问题;
懂得运用一元二次方程解决有关传播、分裂问题;
懂得运用一元二次方程解决有关握手、比赛问题
知识点 1:变化率问题
设基准数为a ,两次增长(或下降)后为 b;增长率(下降率)为 x,第一次增长(或下降)后 为 ;第二次增长(或下降)后为 ².可列方程为 ²=b。
知识点2 :传染、分裂问题
有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 设每轮传染中平均一个人传染了x个人:
知识点3: 握手、比赛问题
握手问题:n个人见面,任意两个人都要握一次手,问总共握次手。赠卡问题:n个人相互之间送卡片,总共要送张卡片。
【题型 1 变化率问题】
【典例1】(2022秋•桂平市期中)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2019年图书借阅总量是7500本,2021年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2019年至2021年的年平均增长率;
(2)已知2021年该社区居民借阅图书人数有1350人,预计2022年达到1440人.如果2021年至2022年图书借阅总量的增长率不低于2019年至2021年的年平均增长率,那么2022年的人均借阅量比2021年增长a%,求a的值至少是多少?
【变式1-1】(2022秋•大连期末)疫情期间“停课不停学”,辽宁省初中数学学科开通公众号进行公益授课,9月份该公众号关注人数为5000人,11月份该公众号关注人数达到7200人,若从9月份到11月份,每月该公众号关注人数的平均增长率相同,求该公众号关注人数的月平均增长率.
【变式1-2】(2022秋•确山县期中)2022年是中国共产党建党101周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,某市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年8月份该基地接待参观人数10万人,10月份接待参观人数增加到12.1万人.
(1)求这两个月参观人数的月平均增长率;
(2)按照这个增长率,预计11月份的参观人数能否突破13.5万人?
【变式1-3】(2022春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.
(1)求该企业从2016年到2018年利润的年平均增长率.
(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?
【典例2】(2022秋•西峡县期中)为了迎接十一“黄金周”,某月季大观园准备分三个阶段扩大月季新品种种植面积,第一阶段已实现新品种1000m2的种植目标,第三阶段需实现1440m2的种植目标,设第二、第三阶段月季新品种种植面积的平均增长率为x,则下列方程正确的是( )
A.1000(1+x)×2=1440B.1000(1+x)2=1440
C.1000(1+x2)=1440D.1000(1+x)+1000(1+x)2=1440
【变式2-1】(2022春•雁塔区校级期末)某化肥厂第一季度生产化肥50万吨,第二、第三季度平均增产的百分率是x,则二、三季度的总产量为( )万吨
A.50(1+x)2B.[50+50(1+x)]
C.[50(1+x)2+50(1+x)]D.[50+50(1+x)+50(1+x)2]
【变式2-2】(2021·舒城期末)我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000 B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000 D.4000+4000(1+x)2=15000
【变式2-3】(2021·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x2)=196D.50+50(1+x)+50(1+2x)=196
【题型2 传染、分裂问题】
【典例3】(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.
(1)每轮传染中平均一个人传染了几个人?
(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?
【变式3-1】(2021秋•新市区校级期中)新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有64人患病,设每轮传染中平均一个人传染了x个人,下列列式正确的是( )
A.x+x(1+x)=64B.1+x+x2=64
C.(1+x)2=64D.x(1+x)=64
【变式3-2】(2022秋•淮南月考)新冠病毒的传染性极强,某地因1人患了新冠病毒没有及时隔离治疗,经过两天的传染后共有9人患了新冠病毒,每天平均一个人传染了几人?如果按照这个传染速度,再经过3天的传染后,这个地区一共将会有多少人患新冠病毒?
【变式3-3】(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?
【典例4】(2022秋•莆田期中)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是( )
A.4B.5C.6D.7
【变式4-1】(2021春•拱墅区校级月考)某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个枝干,每个枝干上再长出x个小分支.若在1个主干上的主干、枝干和小分支的数量之和是43个,则x等于( )
A.4B.5C.6D.7
【变式4-2】(2021秋•蓬江区期末)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是157,每个支干长出的小分支数目为( )
A.12B.11C.8D.7
【变式4-3】(2022秋•莆田期中)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是( )
A.4B.5C.6D.7
【题型3 握手、比赛问题】
【典例5】(2022秋•安定区期中)某校组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了21场比赛,求共有多少个队参加比赛?
【变式5-1】(2021秋•虎林市校级期末)2021年虎林市教育局组织开展了全市中学生篮球联赛,比赛采用单循环赛制(每两队之间进行一场比赛),共进行了66场比赛,则参加比赛的队伍数量是( )
A.10B.11C.12D.13
【变式5-2】(2022•黑龙江模拟)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.
A.8B.9C.10D.11
【变式5-3】(2022秋•昭阳区期中)2022年北京冬奥会冰壶混双项目在国家游泳中心“冰立方”开赛,中国混双球队参加了比赛,赛制为单循环比赛(每两队之间都赛一场).
(1)如果有6支球队参加比赛,那么共进行 场比赛;
(2)如果一共进行45场比赛,那么有多少支球队参加比赛?
【典例6】(2021秋•兰山区期末)一个小组若干人,新年互送贺卡一张,若全组共送贺卡90张,则这个小组共有( )
A.9人B.10人C.12人D.15人
【变式6-1】(2020秋•红桥区期末)要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x个队参加比赛,则x满足的关系式为( )
A.x(x+1)=90B.x(x﹣1)=90
C.x(x+1)=90D.x(x﹣1)=90
【变式6-2】(2021春•济宁期末)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛72场,设参加比赛的球队有x支,根据题意,所列方程为 .
【变式6-3】为了提高环保教育,增强学生实践能力,植树节期间,某校组织八年级学生在郊外植树,活动结束后,每个班级轮流进行了合照留念,并以班级为单位互赠留念照,若共拍得照片72张,则该校八年级有个 班.
1.(2020·合肥模拟)某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为 x .根据题意列方程正确的是( )
A.250(1+x)2=900B.250(1+x%)2=900
C.250(1+x)+250(1+x)2=900
D.250+250(1+x)+250(1+x)2=900
2.(2022•河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )
A.30(1+x)2=50B.30(1﹣x)2=50
C.30(1+x2)=50D.30(1﹣x2)=50
3.(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )
A.8B.10C.7D.9
4.(2022•宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是( )
A.6.2(1+x)2=8.9 B.8.9(1+x)2=6.2
C.6.2(1+x2)=8.9 D.6.2(1+x)+6.2(1+x)2=8.9
5.(2020•通辽)有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了 个人.
6.(2021•沈阳)某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,求增加了多少行或多少列?
7.(2022•眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
8.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
9.(2022•威宁县模拟)书籍是人类宝贵的精神财富,读书则是传承优秀文化的通道.我县为响应全民阅读活动,利用春节假期面向社会开放县图书馆.据统计,第一天进馆100人次,进馆人次逐天增加,第三天进馆121人次.若进馆人次的日平均增长率相同.
(1)求进馆人次的日平均增长率;
(2)因疫情防控要求限制,县图书馆每天接纳能力不得超过200人次,在进馆人次的日平均增长率不变的条件下,县图书馆能否接纳第四天的进馆人次,说明理由.
10.(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.
(1)求4月份再生纸的产量;
(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;
(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?
1.(2021·乌鲁木齐期末)有一人患了流感,经过两轮传染后共有 169 人患了流感,每轮传染中平均一个人传染了 人.
2.(2021秋•新市区校级期中)新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有64人患病,设每轮传染中平均一个人传染了x个人,下列列式正确的是( )
A.x+x(1+x)=64B.1+x+x2=64
C.(1+x)2=64D.x(1+x)=64
3.(2022·杭州开学考)现有x支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是( )
A.12x(x−1)=45B.12x(x+1)=45
C.x(x﹣1)=45D.x(x+1)=45
4.(2021·朝阳期末)参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )
A.12x(x−1)=10B.x(x−1)=10
C.12x(x+1)=10D.2x(x−1)=10
5.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( )
A.9人B.10人C.11人D.12人
6.(2021春•济宁期末)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛72场,设参加比赛的球队有x支,根据题意,所列方程为 .
7.(2021秋•鲁甸县期末)某校在冬运会中,其中一项为乒乓球赛,赛制为参赛的每两个人之间都要比赛一场,根据胜场积分确定排名,由于场地和时间等条件,赛程安排3天,每天安排15场比赛,求共有多少学生参加了冬运会乒乓球赛?
7.(2021·雨花期末)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2019年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2021年底三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2021年底共建设了多少万平方米的廉租房?
8.(2021·南浔期末)科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时补进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题:
(1)求前三天生产量的日平均增长率;
(2)经调查发现,1条生产线最大产能是600万个/天,若每增加 1 条生产线,每条生产线的最大产能将减少20万个/天.
①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.
9.(2021·余姚竞赛)随着全球疫情的爆发,医疗物资需求猛增,某企业及时引进一条口罩生产线生产口罩,开工第一天生产口罩5000盒,第三天生产口罩7200盒,若每天增长的百分率相同.
(1)求每天增长的百分率.
(2)经调查发现,1条生产线的最大产能是15000盒/天,但是每增加1条生产线,每条生产线的产能将减少500盒/天,现该厂要保证每天生产口罩65000盒,在增加产能的同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
10.(2021•贵港)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.
(1)求这两年藏书的年均增长率;
(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?
初中数学苏科版九年级上册第1章 一元二次方程1.1 一元二次方程课时练习: 这是一份初中数学苏科版九年级上册<a href="/sx/tb_c17310_t7/?tag_id=28" target="_blank">第1章 一元二次方程1.1 一元二次方程课时练习</a>,文件包含第02讲解一元二次方程-开平方和配方法知识解读+真题演练+课后巩固原卷版docx、第02讲解一元二次方程-开平方和配方法知识解读+真题演练+课后巩固解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
初中数学苏科版九年级上册1.1 一元二次方程精练: 这是一份初中数学苏科版九年级上册<a href="/sx/tb_c17310_t7/?tag_id=28" target="_blank">1.1 一元二次方程精练</a>,文件包含第1章一元二次方程达标检测卷A卷原卷版docx、第1章一元二次方程达标检测卷A卷解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
苏科版1.1 一元二次方程巩固练习: 这是一份苏科版<a href="/sx/tb_c17310_t7/?tag_id=28" target="_blank">1.1 一元二次方程巩固练习</a>,文件包含第1章一元二次方程能力提升卷B卷原卷版docx、第1章一元二次方程能力提升卷B卷解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。