初中数学浙教版八年级下册6.3 反比例函数的应用课时作业
展开
这是一份初中数学浙教版八年级下册6.3 反比例函数的应用课时作业,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即: 阻力阻力臂=动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力 (单位: )关于动力臂(单位: )的函数解析式正确的是( )
A.B.C.D.
2.港珠澳大桥桥隧全长55千米,其中主桥长29.6千米,一辆汽车从主桥通过时,汽车的平均速度 v(千米/时)与时间 t(小时)的函数关系式为( )
A.B.C.v=29.6tD.
3.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温和时间的关系如图所示,水温从100℃降到50℃所用的时间是( )
A.7分钟B.13分钟C.20分钟D.27分钟
4.阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识——杠杆原理,即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为和,则这一杠杆的动力和动力臂之间的函数图象大致是( )
B.C.D.
5.疫情期间,某校工作人员对教室进行消毒时,室内每立方米空气中的含药量y(毫升)与喷洒消毒液的时间x(分钟)成正比例关系,喷洒完成后,y与x成反比例关系(如图所示).已知喷洒消毒液用时6分钟,此时室内每立方米空气中的含药量为16毫升.问室内每立方米空气中的含药量不低于8毫升的持续时间为( )
A.7分钟B.8分钟C.9分钟D.10分钟
6.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是
A.B.C.D.
7.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种蔬菜.上图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图像,其中BC段是双曲线(k≠0)的一部分,则当x = 16时,大棚内的温度约为( )
A.18℃B.15.5℃C.13.5℃D.12℃
木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图所示,当压强不超过400 Pa时,木板的面积应( )
A.不大于1.5 m2B.不小于1.5 m2
C.不大于m2D.不小于m2
9.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是( )
A.函数解析式为B.蓄电池的电压是18V
C.当时,D.当时,
10.在显示汽车油箱内油量的装置模拟示意图中,电压一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积与电路中总电阻是反比例关系,电流与也是反比例关系,则与的函数关系是( )
A.反比例函数B.正比例函数C.二次函数D.以上答案都不对
二、填空题
11.列车从甲地驶往乙地.行完全程所需的时间与行驶的平均速度之间的反比例函数关系如图所示.若列车要在内到达,则速度至少需要提高到__________.
12.我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x天之间的函数关系如图所示(当时,y与x是正比例函数关系;当时,y与x是反比例函数关系).则体内抗体浓度y高于70微克/ml时,相应的自变量x的取值范围是______.
13.近视镜镜片焦距(米)是镜片度数(度)的某种函数,下表记录了一些数据:
利用表格中的数据关系计算:当镜片度数为度时,镜片焦距为______米.
14.如图,每个台阶的高和宽分别是1和2,台阶凸出的角的顶点记作(其中为1~8的整数),函数的图象为曲线.若曲线使得这些点分布在它的两侧,每侧各4个点,则的取值范围为______.
(度)
…
…
(米)
…
…
15.青藏铁路是当今世界上海拔最高、线路最长的高原铁路,因路况、季节、天气等原因行车的平均速度在(千米/小时)之间变化,铁路运行全程所需要的时间(小时)与运行的平均速度(千米/小时)满足如图所示的函数关系,列车运行的平均速度最大和列车运行的平均速度最小时全程所用时间相差___小时.
16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,若以此蓄电池为电源的用电器限制电流不能超过10A,则用电器的可变电阻应不小于______Ω.
17.你吃过兰州拉面吗?实际上做拉面的过程渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条粗细(横截面积)的反比例函数,假设其图象如图所示,则与之间的函数表达式为________.
18.某蔬菜生产基地在气温较低时用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后大棚内的温度随时间(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内的温度的时间有______小时;
(2)______;
(3)当棚内温度不低于时,该蔬菜能够快速生长,则这天该蔬菜能够快速生长______小时.
三、解答题
19.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:)变化时,气体的密度(单位:)随之变化.已知密度与体积V是反比例函数关系,它的图象如图所示,当时,.
求密度关于体积V的函数解析式;
若,求二氧化碳密度的变化范围.
20.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).
(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.
(2)分别求出线段AB和双曲线CD的函数关系式.
(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?
21.我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度(微克/ml)与注射时间天之间的函数关系如图所示(当时,与是正比例函数关系;当时,与是反比例函数关系).
(1)根据图象求当时,与之间的函数关系式;
(2)当时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?
22.为了做好新冠肺炎疫情期间开学工作,我区某中学用药熏消毒法对教室进行消毒.已知一瓶药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出倾倒一瓶药物后,从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量不低于8毫克时,消毒有效,那么倾倒一瓶药物后,从药物释放开始,有效消毒时间是多少分钟?
23.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中为线段,为双曲线的一部分).
线段函数关系式是 ,双曲线的函数关系式是 .
一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?
24.如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:
根据表中数据,求出压强P(Pa)关于受力面积S()的函数表达式及a的值.
如图2,将另一长,宽,高分别为60cm,20cm,10cm,且与原长方体相同重量的长方体放置于该水平玻璃桌面上.若玻璃桌面能承受的最大压强为2000Pa,问:这种摆放方式是否安全?请判断并说明理由.
答案
一、单选题
1.C 2.D 3.A 4.A 5.C 6.C 7.C 8.B 9.C 10.B
二、填空题
11.240
12.
13.
14.
15.
16.3.6
17.
18. 10 216 12.5
三、解答题
19.
(1)解:∵密度与体积V是反比例函数关系,
∴设,
∵当时,,
∴,
∴,
∴密度关于体积V的函数解析式为:;
(2)解:观察函数图象可知,随V的增大而减小,
当时,,
当时,,
∴当时,
即二氧化碳密度的变化范围是.
20.
解:(1)(2)设线段AB所在的直线的解析式为y1=k1x+30,
把B(10,50)代入得,k1=2,
∴AB解析式为:y1=2x+30(0≤x≤10).
设C、D所在双曲线的解析式为y2=,
把C(20,50)代入得,k2=1000,
∴曲线CD的解析式为:y2=(x≥20);
当x1=5时,y1=2×5+30=40,
当x2=30时,y2=,
∴y1>y2
∴第5分钟注意力更集中.
故答案为:5;
(3)当时,.
.
∴.
∴教师能在学生注意力达到所需要求状态下讲完这道题.
21.
解:(1)设当时,与之间的函数关系式是,
图象过解得:,
y与之间的函数关系式是;
(2)当时,,解得:,
体内抗体浓度不高于140微克/ml是从注射药物第40天开始.
22.
解:(1)当0≤x≤15时,设y=ax(a≠0);
当x>15时,设y=(k≠0).
将(15,20)代入y=ax,
20=15a,解得:a=,
∴y=x(0≤x≤15).
将(15,20)代入y=,
20=,解得:k=300,
∴y=(x>15),
∴ ;
(2)把y=8代入y=x得,x=6;
把y=8代入y=得,x=37.5,
37.5-6=31.5(分钟).
答:有效消毒时间是31.5分钟.
23.
(1)解:设线段函数关系式为,
把点和代入得:
,
解得:,
∴线段函数关系式为;
设双曲线的函数关系式是,
把点代入得:,
解得:,
∴双曲线的函数关系式是;
(2)解:当时,对于,有
,解得:,
对于,有
,
解得:,
∴学生注意力达到所需状态的时间为,
∵,
∴教师能在学生注意力达到所需状态下讲完这道题.
24.
(1)解:观察图表得:压强P与受力面积S的乘积不变,故压强P是受力面积S的反比例函数,
设压强P(Pa)关于受力面积S()的函数表达式为,
把(400,0.5)代入得:,
解得:k=200,
∴压强P(Pa)关于受力面积S()的函数表达式为,
当P=800时,,
∴a=0.25;
(2)解:这种摆放方式不安全,理由如下:
由图可知S=0.1×0.2=0.02(),
∴将长方体放置于该水平玻璃桌面上的压强为,
∵10000>2000,
∴这种摆放方式不安全.
桌面所受压强P(Pa)
400
500
800
1000
1250
受力面积S()
0.5
0.4
a
0.2
0.16
相关试卷
这是一份数学八年级下册6.3 反比例函数的应用课时作业,共3页。
这是一份浙教版八年级下册6.3 反比例函数的应用课时训练,共8页。试卷主要包含了3 反比例函数的应用等内容,欢迎下载使用。
这是一份初中数学浙教版八年级下册6.3 反比例函数的应用课堂检测,共4页。