所属成套资源:2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版)
- 专题1.1 全等三角形七大基本模型 专项讲练-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版) 试卷 2 次下载
- 专题1.3 三角形的初步认识 重难点题型11个-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版) 试卷 5 次下载
- 第1章 三角形的初步认识 章末检测卷-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版) 试卷 1 次下载
- 专题2.1 等腰(直角)三角形中的分类讨论问题 专项讲练-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版) 试卷 1 次下载
- 专题2.2 最值模型之将军饮马 专项讲练-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版) 试卷 3 次下载
专题1.2 全等三角形相关辅助线五种方法 专项讲练-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版)
展开这是一份专题1.2 全等三角形相关辅助线五种方法 专项讲练-2022-2023学年八年级数学上册重难题型全归纳及技巧提升专项精练(浙教版),文件包含专题12全等三角形相关辅助线五种方法专项讲练原卷版docx、专题12全等三角形相关辅助线五种方法专项讲练解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
专题1.2 全等三角形相关辅助线五种方法 专项讲练
方法一:截长补短法
【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
【模型图示】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
例1.(2021·广西玉林市·八年级期末)在中,,点D、E分别在、上,连接、和;并且有,.(1)求的度数;(2)求证:.
变式1.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
方法1:在上截取,连接,得到全等三角形,进而解决问题;
方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
方法二: 旋转法
【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等。
注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用。
【模型图示】
例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN
方法:旋转△ABM至△ACF处,证NE=MN
例2.(探索发现)如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将绕点A顺时针旋转,点D与点B重合,得到,连接AM、AN、MN.
(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.
(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,,连接MN,请写出MN、DM、BN之间的数量关系,并写出证明过程.
(3)如图③,在四边形ABCD中,AB=AD,,,点N,M分别在边BC,CD上,,请直接写出线段BN,DM,MN之间的数量关系.
变式2. 如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有( )
A.①②③④ B.②③ C.②③④ D.③④
方法三:倍长中线模型
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
例3.(2021·河南新乡学院附属中学八年级月考)如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是( )
A.1<AD<6 B.1<AD<4 C.2<AD<8 D.2<AD<4
变式3.(2021·湖北八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.
(1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是 ;
(2)如图2,是的中线,点在边上,交于点且,求证:;
(3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.
方法四:过端点作另一边的平行线
【模型分析】目的:构造出一组全等三角形 特点:中线倍长的反向应用
例4.(2021·河南新乡·八年级期末)如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.求让:
变式4.(2022·湖北·武钢实验学校八年级期中) P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
方法五:向中线作垂线
【模型分析】过线段两端点向中点处的线段作垂线。
例5.(2022.广东省八年级期中)如图,△ABC中,D为BC的中点,(1)在图中作出CM⊥AD,BN⊥AD,垂足分别为M、N;(2)求证:DM=DN;(3)求AD=3,求AM+AN的值.
式5. (2022.河北省八年级期中)如图.∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC,CB的延长线交DE于F。(1)求证:点F是ED的中点;(2)求证:S△ABC=2S△BEF.
课后训练
1.(2022·四川绵阳·八年级期中)如图,△ABC是边长为2的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC到点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为( )
A.0.5 B.0.9 C.1 D.1.25
2.(2022·湖北武汉·八年级期中)如图,在△ABC中,点M,N分别是AC,BC上一点,AM=BN,∠C=60°,若AB=9,BM=7,则MN的长度可以是( )
A.2 B.7 C.16 D.17
3.(2022·全国·八年级课时练习)如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=_____.
4.(2022·安徽合肥·八年级期末)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
5.(2021·吉林八年级期末)如图①,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥CA的延长线点E,由∠1+∠2=∠D+∠2=90°,得∠1=∠D,又∠ACB=∠AED=90°,AB=AD,得△ABC≌△DAE进而得到AC=DE,BC=AE, 我们把这个数学模型称为“K字”模型或“一线三等角”模型.
请应用上述“一线三等角”模型,解决下列问题:
(1)如图②,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AH于点H,DE与直线AH交于点G,求证:点G是DE的中点.
(2)如图③,在平面直角坐标系中,点A为平面内任意一点,点B的坐标为(4,1),若△AOB是以OB为斜边的等腰直角三角形,请直接写出点A的坐标.
6.(2022·全国初三专题练习)如图,在中,,,,,延长交于.求证:.
7.(2022·安徽八年级期末)如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G. 求证:GD=GE.
8.(2022·全国初三专题练习)如图,是延长线上一点,且,是上一点,,求证:.
9.(2022·江苏·八年级专题练习)如图,在四边形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求证:AD=CD.
10.(2022·江苏·八年级专题练习)△ABC、△DPC都是等边三角形.
(1)如图1,求证:AP=BD;(2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM.①求证:BP⊥BD;②判断PC与PA的数量关系并证明.
11.(2021·湖北武汉·八年级期中)已知中,(1)如图1,点E为的中点,连并延长到点F,使,则与的数量关系是________.(2)如图2,若,点E为边一点,过点C作的垂线交的延长线于点D,连接,若,求证:.
(3)如图3,点D在内部,且满足,,点M在的延长线上,连交的延长线于点N,若点N为的中点,求证:.
12.(2022·江西·景德镇一中七年级期末)如图,在△ABC中,∠A=100°,AB=AC,BE是∠ABC的平分线,求证:AE+BE=BC.
13.(2022·安徽合肥·一模)已知:如图1,△ABC中,∠CAB=120°, AC=AB,点D是BC上一点,其中∠ADC=α(30°<α<90°),将△ABD沿AD所在的直线折叠得到△AED,AE交CB于F,连接CE
(1)求∠CDE与∠AEC的度数(用含α的代数式表示);(2)如图2,当α=45°时,解决以下问题:
①已知AD=2,求CE的值;②证明:DC-DE=AD;
14.(2022·江苏徐州·模拟预测)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是 ;(不需要证明)
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.
15.(2021·四川·成都七中八年级期中)已知,在△ABC中,AB=AC,
(1)如图1,若,且点D在CA的延长线上时,求证:;
(2)如图2,若,试判断AD,BD,CD之间的等量关系,并说明理由
(3)如图3,若BD=5,求CD的长.
16.(2021·陕西西安市·七年级期末)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.
方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;
小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;
问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;
(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.