终身会员
搜索
    上传资料 赚现金

    2023年陕西省榆林市中考数学二模试卷(含解析)

    立即下载
    加入资料篮
    2023年陕西省榆林市中考数学二模试卷(含解析)第1页
    2023年陕西省榆林市中考数学二模试卷(含解析)第2页
    2023年陕西省榆林市中考数学二模试卷(含解析)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年陕西省榆林市中考数学二模试卷(含解析)

    展开

    这是一份2023年陕西省榆林市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。


    2023年陕西省榆林市中考数学二模试卷

    一、选择题(本大题共8小题,共24.0分。在每小题列出的选项中,选出符合题目的一项)

    1.  计算:(    )

    A.  B.  C.  D.

    2.  一个几何体的侧面展开图如图所示,则该几何体的底面形状是(    )

    A.
    B.
    C.
    D.

    3.  下列运算正确的是(    )

    A.  B.
    C.  D.

    4.  将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若,则的度数为(    )
     

    A.  B.  C.  D.

    5.  如图,在中,点分别是的中点,点上一点,连接,点的中点,连接,若,则的长为(    )

    A.  B.  C.  D.

    6.  某品牌鞋子的长度与鞋子的“码”数之间满足一次函数关系码鞋子的长度为码鞋子的长度为,则码鞋子的长度为(    )

    A.  B.  C.  D.

    7.  如图,点上,,垂足分别为,若,则的度数为(    )

    A.
    B.
    C.
    D.

    8.  二次函数的图象经过四个点,若,则下列结论正确的是(    )

    A.  B.  C.  D.

    二、填空题(本大题共5小题,共15.0分)

    9.  的立方根为          

    10.  如图,数轴上点对应的数分别为,点在线段上运动请你写出点可能对应的一个无理数是______


    11.  算法统宗记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为步,宽和对角线之和为步.不知该田有几亩?请我帮他算一算,该田有______平方步

    12.  若点在反比例函数的图象上,则代数式 ______

    13.  如图,正方形的点均在正方形的四条边上,点分别在上,,若,则的长为______


     

    三、计算题(本大题共1小题,共5.0分)

    14.  解分式方程:

    四、解答题(本大题共12小题,共76.0分。解答应写出文字说明,证明过程或演算步骤)

    15.  本小题
    计算:

    16.  本小题
    解不等式:,并求这个不等式的正整数解.

    17.  本小题
    如图,在中,的平分线于点请利用尺规分别在上求作点,使得四边形是菱形保留作图痕迹,不写作法


    18.  本小题
    如图,已知上一点,求证:


    19.  本小题
    一个三位数整数,代表这个整数最左边的数,代表这个整数最右边的数正好为剩下的中间数,则这个三位数就叫平衡数,倒如:满足就是平衡数.
    判断: ______ 平衡数;填“是”或“不是”
    证明:任意一个三位数的平衡数一定能被整除.
     

    20.  本小题
    中亚峰会将于日至日在陕西省西安市举行某校为迎接中亚峰会的到来举办了主题为“喜迎峰会,共促发展”的晚会晚会的观看区域有个,分别为号、号、号、号区域为公平起见,校团委采用转转盘的方式决定每个班级观看晚会的所在区域如图,转盘被平均分成个扇形,每个扇形上分别标有号、号、号、号,每个班班长转动转盘一次,转盘停止后指针指到的区域即代表该班所在区域若指针指在分界线上则重转
    班班长转到号区域的概率是______
    请利用树状图或列表法,求八班和九班转到同一个区域的概率.


    21.  本小题
    星明楼,又称新楼,位于榆林市南大街中心,如图小华为了解星明楼查阅资料发现星明楼的高度米,一天他实地观测星明楼,如图,他在距星明楼处,沿向点前进,当走到点处时,恰好看到广告牌的顶端和楼顶在一条直线上,小华的眼睛到地面的距离米,广告牌的高度米,米,点在一条水平线上,,请求出小华从处向前走了多少米恰好看到点和点在一条直线上即求的长

     

    22.  本小题
    小明在学习一次函数后,对形如其中为常数,且的一次函数图象和性质进行了探究,过程如下:
    【特例探究】
    如图所示,小明分别画出了函数的图象网格中每个小方格边长为通过对上述几个函数图象的观察、思考,发现为常数,且的图象一定会经过的点的坐标是______
    【深入探究】
    归纳:函数其中为常数,且的图象一定会经过的点的坐标是______ 用含的字母表示
    【实践运用】
    已知一次函数为常数,且的图象一定会经过点,且与轴相交于点,点为坐标原点,若的面积为,求的值.


    23.  本小题
    诗画中国以“诗画合擎”的全新样态和新颖视角,通过现代科技手段与多元艺术形态,全景呈现“纳山河万景,涵上下千年”的中国诗画之美为传承中国优秀文化,某地举行主题为诗表画意,画传诗情的短视频征集活动,活动结束后主办方想了解所征集的短视频时长分布情况,随机抽取部分视频统计其时长,整理并绘制了如下尚不完整的统计图表.
    分组频数各组总时长

    合计

    根据以上信息,回答下列问题:
    填空: ______ ______ ,所抽取视频时长的中位数落在______ 组;
    求所抽取视频的平均时长;
    若此次征集到部短视频,请你估计这部短视频的总时长.


    24.  本小题
    如图,的直径,的弦,延长,连接,连接并延长交于点
    试判断的位置关系,并说明理由;
    ,求的长.


    25.  本小题
    如图,某动物园的大门由矩形和抛物线形组成,分别以所在直线为轴,轴建立平面直角坐标系,米,抛物线顶点的坐标为
    求此抛物线对应的函数表达式;
    近期需对大门进行装修,工人师傅搭建一三角形木架方便施工,点正好在抛物线上且在点右侧,支撑杆轴于点米,求支撑杆与大门最右侧的水平距离


    26.  本小题
    操作探究
    如图,在平面直角坐标系中,有点,利用直尺在轴上找一点,使点到点和点的距离之和最小,标出点的位置并简单说明作法不用说明原理
    问题探究
    如图,在中,分别在上,,若,求用含的式子表示
    问题解决
    如图,有一片形状为菱形的湿地,,点之间的距离为,计划在湿地内圈出一个动物保护区区域,点分别在线段上,,点和点是巡视员休息站,点是菱形的对称中心为方便定时检查动物保护区,现要沿开辟两条笔直的小道,根据要求小道的总长要尽可能的小的长度存在最小值吗?若存在,请求出的最小值;若不存在,说明理由.


    答案和解析

     

    1.【答案】 

    【解析】解:
    故选:
    根据有理数的混合运算法则进行计算即可.
    本题考查了有理数的混合运算,掌握有理数的混合运算法则是解题的关键.
     

    2.【答案】 

    【解析】解:由题意知,此几何体为三棱柱,
    故该几何体的底面形状是三角形,
    故选:
    根据侧面展开图可以判断此几何体为三棱柱,然后得出结论即可.
    本题主要考查几何体的展开图,熟练掌握简单几何体的展开图是解题的关键.
     

    3.【答案】 

    【解析】解:不是同类项,故不符合题意;
    B.原式,故不符合题意;
    C.原式,故符合题意;
    D.原式,故不符合题意;
    故选:
    根据整式的运算法则即可求出答案.
    本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
     

    4.【答案】 

    【解析】

    【分析】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    根据平行线的性质,即可得出,再根据等腰直角三角形中,,即可得到
    【解答】
    解:如图,



    等腰直角三角形中,

    故选B  

    5.【答案】 

    【解析】解:,点的中点,

    分别是的中点,
    的中位线,

    故选:
    根据直角三角形的性质得出,进而利用三角形中位线定理解答即可.
    此题考查三角形中位线定理,关键是根据三角形中位线平行于第三边,并且等于第三边的一半解答.
     

    6.【答案】 

    【解析】

    【分析】
    本题考查一次函数的应用,用待定系数法求函数解析式是本题的关键.
    先设出函数解析式,用待定系数法求出函数解析式,再把代入求出即可.
    【解答】
    解:鞋子的长度与鞋子的“码”数之间满足一次函数关系,
    设函数解析式为:
    由题意知,时,时,

    解得:
    函数解析式为:
    时,
    故选B  

    7.【答案】 

    【解析】解:



    的度数是
    优弧的度数是
    圆周角的度数是
    故选:
    根据垂直定义求出,根据四边形的内角和定理求出,求出的度数,再求出优弧的度数,再求出答案即可.
    本题考查了垂直定义,四边形的内角和定理,圆周角定理等知识点,能求出优弧的度数是解此题的关键.
     

    8.【答案】 

    【解析】解:二次函数的对称轴为直线,且开口向上,
    与点关于对称轴对称,点与点关于对称轴对称,


    在点左侧,

    在点的左侧,

    ,正确.,错误;,错误;,错误;
    故选:
    先找出二函数的对称轴,根据开口方向,结合对轴称可得出,然后可判断可选项是否正确.
    此题主要是考查了二次函数的性质,能够根据二次函数的性质得出抛物线的对称轴是解答此题的关键.
     

    9.【答案】 

    【解析】

    【分析】
    利用立方根定义计算即可得到结果.
    此题考查了立方根,熟练掌握立方根的定义是解本题的关键.
    【解答】
    解:的立方根是
    故答案为:  

    10.【答案】答案不唯一,如 

    【解析】解:上,
    对应的无理数在之间,
    可以是
    故答案为:答案不唯一,如
    根据点的位置,可确定所求无理数的范围,在所确定的范围内确定一个无理数即可.
    此题考查实数与数轴及估算无理数的大小,关键是根据无理数的估计解答.
     

    11.【答案】 

    【解析】解:设该矩形的宽为步,则对角线为步,
    由勾股定理,得
    解得
    故该矩形的面积平方步
    平方步亩.
    故答案是:
    根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.
    考查了勾股定理的应用,此题利用方程思想求得矩形的宽.
     

    12.【答案】 

    【解析】解:在反比例函数的图象上,
    ,得

    故答案为:
    根据点在反比例函数的图象上,可以求得的值,从而可以得到所求式子的值.
    本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
     

    13.【答案】 

    【解析】解:四边形是正方形,









    中,






    负值舍去

    故答案为:
    根据,证明得出,进而证明,得出,设,在中,勾股定理求得,进而求得的长.
    本题考查了正方形的性质,相似三角形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.
     

    14.【答案】解:去分母得:
    解得:
    检验:把代入
    是原分式方程的解. 

    【解析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.
    此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
     

    15.【答案】解:


     

    【解析】直接利用二次根式的除法运算法则以及绝对值的性质、零指数幂的性质分别化简,进而得出答案.
    此题主要考查了实数的运算,正确化简各数是解题关键.
     

    16.【答案】解:



    原不等式的解集为 
    原不等式的正整数解为 

    【解析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为可得.
    本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
     

    17.【答案】解:如图所示,作的垂直平分线交于点,则点即为所求.

    理由如下:

    的垂直平分线,


    的平分线于点



    同理可得
    四边形是平行四边形,

    四边形是菱形. 

    【解析】的垂直平分线交于点,则点即为所求.
    本题考查了作垂直平分线,角平分线的定义,菱形的判定,熟练掌握基本作图是解题的关键.
     

    18.【答案】证明:



    中,


     

    【解析】,得,即可根据全等三角形的判定定理“”证明,得
    此题考查了全等三角形的判定与性质,正确地找到全等三角形的对应边和对应角并且证明是解题的关键.
     

    19.【答案】 

    【解析】解:
    是平衡数,
    故答案为:是.
    证明:设这个三位平衡数为:





    任意一个三位数的平衡数一定能被整除.
    根据平衡数的定义即可判断;
    设出这个三位平衡数,化简即可验证.
    本题考查了整式的加减的应用,有理数的混合运算,根据题意列出式子是解题的关键.
     

    20.【答案】 

    【解析】解:班班长转到号区域的概率是
    故答案为:
    画树状图如下:

    共有种等可能的结果,其中八班和九班转到同一个区域的结果有种,
    班和九班转到同一个区域的概率为
    直接由概率公式求解即可;
    画树状图,共有种等可能的结果,其中八班和九班转到同一个区域的结果有种,再由概率公式求解即可.
    此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率所求情况数与总情况数之比.
     

    21.【答案】解:如图:过点于点,交于点

    由题可得:




    解得:


    小华从处向前走了米恰好看到点和点在一条直线上. 

    【解析】如图:过点于点,交于点;由题可得:;然后证明可得,进而得到,即;最后根据即可解答.
    本题主要考查了相似三角形的判定与性质,正确作出辅助线、构造相似三角形是解答本题的关键.
     

    22.【答案】   

    【解析】解:通过对上述几个函数图象的观察、思考,发现为常数,且的图象一定会经过的点的坐标是
    故答案为:
    函数其中为常数,且的图象一定会经过的点的坐标是
    故答案为:
     代入
    坐标为
    代入
    坐标为


    时,
    时,
    的值为
    观察图象即可得到结论;
    根据的规律即可求得经过;
    求得定点坐标与轴的交点,然后利用三角形面积即可得到关于的方程,解方程即可.
    本题考查了一次函数图象上点的坐标特征,一次函数的图象和性质,三角形的面积,数形结合是解题的关键.
     

    23.【答案】     

    【解析】解:由题意可知,

    所抽取视频时长的中位数落在组;
    故答案为:

    所抽取视频的平均时长为秒;

    估计这部短视频的总时长为秒.
    根据频数分布直方图可得的值,再用总数减去其他频数可得的值;根据中位数的定义可得所抽取视频时长的中位数落在组;
    根据加权平均数的计算方法进行计算即可;
    根据的结论,用样本估计总体即可.
    本题考查频数分布直方图的意义和制作方法,理解加权平均数的意义和计算方法,掌握频数、频率、总数之间的关系是正确解答的前提.
     

    24.【答案】解:相切.
    理由:连接



    垂直平分





    的直径,
    相切;







    ,则
    中,
    解得负值舍去
     

    【解析】连接,根据已知条件得到垂直平分线段,求得,得到,根据切线的判定定理得到相切;
    根据三角函数的定义得到,即,则,根据勾股定理即可得到结论.
    本题考查了直线与圆的位置关系,解直角三角形,线段垂直平分线的性质,正确地作出辅助线是解题的关键.
     

    25.【答案】解:设抛物线对应的函数表达式为
    代入得:
    解得

    抛物线对应的函数表达式为
    ,抛物线对称轴为直线可得
    中,令
    解得
    正好在抛物线上且在点右侧,


    支撑杆与大门最右侧的水平距离为米. 

    【解析】设抛物线对应的函数表达式为,用待定系数法可得抛物线对应的函数表达式为
    ,抛物线对称轴为直线可得;在中,令得可得横坐标,即可得到支撑杆与大门最右侧的水平距离为米.
    本题考查二次函数的应用,涉及待定系数法,解题的关键是把实际问题转化为数学问题解决.
     

    26.【答案】解:作点关于轴的对称点,连接轴的交点即为点的位置;作法不唯一



    中,









    的长度存在最小值,的最小值为,理由如下:
    如图,在上截取,连接,作点关于的对称点,连接

    是菱形的对称中心,点之间的距离为
    经过点
    在菱形中,













    与点关于对称,



    三点共线时,的值最小,最小值为
    中,根据勾股定理得:

    的长度存在最小值,的最小值为 

    【解析】根据轴对称的性质即可作出点的位置;
    证明,可得,然后利用角的和差即可解决问题;
    上截取,连接,作点关于的对称点,连接,根据菱形的性质证明,可得,当三点共线时,的值最小,最小值为,利用勾股定理即可解决问题.
    本题是四边形的综合题,考查了轴对称性质,全等三角形的判定与性质,菱形的性质,勾股定理等知识,解决轴对称最短路线问题是关键.
     

    相关试卷

    2023年陕西省榆林市靖边县中考数学二模试卷(含解析):

    这是一份2023年陕西省榆林市靖边县中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年陕西省榆林市绥德县中考数学三模试卷(含解析):

    这是一份2023年陕西省榆林市绥德县中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年陕西省榆林市榆阳区中考数学二模试卷(含解析):

    这是一份2023年陕西省榆林市榆阳区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map