所属成套资源:高中数学人教A版(2019)必修第一册同步精讲课件
必修 第一册5.6 函数 y=Asin( ωx + φ)备课课件ppt
展开
这是一份必修 第一册5.6 函数 y=Asin( ωx + φ)备课课件ppt,共14页。PPT课件主要包含了问题1筒车模型,构建函数模型,问题2摩天轮等内容,欢迎下载使用。
1. 经历匀速圆周运动数学建模的过程,了解正弦型函数的现实背景,体会三角函数与现实世界的紧密联系.2. 掌握匀速圆周运动的数学模型,会用其解决相关的实际建模问题,进一步巩固三角函数的图像与性质.3. 依托现实情境,发展学生数学抽象、数学运算和数学建模的核心素养.
我们知道,单位圆上的点,以(1,0)为起点,以单位速度按逆时针方向运动,其运动规律可用三角函数加以刻画. 对于一个一般的匀速圆周运动可以用怎样的数学模型刻画呢?下面先看一个实际问题.
问题 筒车是我国古代发明的一种水利灌溉工具,因经济又环保,至今还在农业生产中得到使用. 明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理
假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动. 你能用一个合适的函数模型来刻画盛水筒(视为质点)距离水面的相对高度与时间的关系吗?
因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数刻画它的运动规律.
与盛水筒运动相关的量有哪些?它们之间有怎样的关系?
将筒车抽象为一个几何图形,设经过 t s后,盛水筒M从点P0运动到点P. 这个盛水筒距离水面的高度H,筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω.
以O为原点,以与水面平行的直线为x轴建立直角坐标系.设t=0时,盛水筒M位于P0,以Ox为始边,OP0为终边的角为φ,经过t s后运动到点P(x,y)
所以 H=r sin(ωx+φ)+h ②
OP为终边的角为ωx+φ
则 y = r sin(ωx+φ) ①
函数②就是要建立的数学模型,只要将它的性质研究清楚,就能把握盛水筒的运动规律。而h为常量,我们可以只研究①的性质。
摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距地面高度为120 m,转盘直径为110 m,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到离地面最近的位置进舱,转一周大约需要30 min.(1)游客甲坐上摩天轮的座舱,开始转动t min后离地面的高度为H m,求在转动一周的过程中,H关于t的函数解析式;(2)求游客甲在开始转动5 min后离地面的高度;
最低处P(0,-55)
你打算选择什么函数模型来刻画这个实际问题?为什么?
(1)游客甲坐上摩天轮的座舱,开始转动t min后离地面的高度为H m,求在转动一周的过程中,H关于t的函数解析式;
(2)求游客甲在开始转动5 min后离地面的高度;
相关课件
这是一份人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)授课ppt课件,共24页。PPT课件主要包含了导入新课,精彩课堂,课堂练习,课堂总结等内容,欢迎下载使用。
这是一份数学必修 第一册5.6 函数 y=Asin( ωx + φ)课文配套课件ppt,共21页。PPT课件主要包含了导入新课,精彩课堂,课堂练习,y﹣cos2x,课堂总结等内容,欢迎下载使用。
这是一份人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)图文ppt课件,共45页。PPT课件主要包含了图5-6-2,图5-6-3,角度一平移变换,角度二伸缩变换,图像如图所示,ABC,图5-6-6等内容,欢迎下载使用。