![2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版)(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/14198243/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版)(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/14198243/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版)(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/14198243/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学三轮冲刺考前查漏补缺 (提高版)(含答案)
2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版)(含答案)
展开
这是一份2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版)(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学三轮冲刺考前查漏补缺《圆》(提高版) 一 、选择题1.若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于( )A.45° B.135° C.90°和270 D.45°和135°2.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )A.12.5° B.15° C.20° D.22.5°3.如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( )A.+ B.2+ C.4 D.2+24.如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30°.下列四个结论:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是( )A.①③ B.①②③④ C.②③④ D.①③④5.如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( ) A. B. C.D.6.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=( )A.3 B.3 C.4 D.27.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为( ) A.4 B.2+ C. D.2+8.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为( )A.9﹣3π B.9﹣2π C.18﹣9π D.18﹣6π 二 、填空题9.如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的二次项为1的一元二次方程是 . 10.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为 .11.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是 .12.如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是 13.如图,已知T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=:2;③a:b=1:;④S1:S2=3:4.其中正确的有 .(填序号)14.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为 cm2.三 、解答题15.如图,已知BC是⊙O的一条弦,点A是⊙O的优弧BAC的一个动点(点A与点B,C不重合),∠BAC的平分线AP交⊙O于点P,∠ABC的平分线BE交AP于点E,连接BP.(1)求证:点P为弧BC的中点;(2)PE的长度是否会随点A的运动而变化?请说明理由. 16.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值. 17.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连结EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积. 18.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE.(1)求证:直线PD是⊙A的切线;(2)若PC=2,sin∠P=,求图中阴影部份的面积. 19.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF.CF,CF与OA交于点G.(1)求证:直线AB是⊙O的切线;(2)求证:OD•EG=OG•EF;(3)若AB=4BD,求sin∠A的值. 20.如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.
参考答案1.D.2.B3.C.4.B5.B.6.D.7.B.8.A.9.答案为:x2﹣x+1=0.10.答案为:10.11.答案为:4.12.答案为:3或7.13.答案为:①②④.14.答案为:21π﹣.15.证明:(1)∵∠BAC的平分线AP交⊙O于点P,即∠BAP=∠CAP, ∴弧PB=弧PC,∴点P为弧BC的中点.(2)PE的长度不会随点A的运动而变化.理由如下:如图,∵BE平分∠ABC,∴∠4=∠5.∵∠3=∠1+∠4,而∠1=∠2,∴∠3=∠5+∠2.∵∠2=∠6,∴∠3=∠5+∠6,∴PE=PB,∴PE的长度不会随点A的运动而变化.16.(1)证明:∵△ABC是等腰直角三角形,∴AC=AB,∠PBA=45°,∴∠PEA=∠PBA=45°,∵PE为⊙O的直径,∴∠PAE=90°,∴△APE是等腰直角三角形;(2)解:∵∠PAE=∠CAB=90°,∴∠CAB-∠PAB=∠PAE-∠PAB,∴∠CAP=∠BAE,∵△ABC是等腰直角三角形,又由(1)得△APE是等腰直角三角形,∴PA=AE,AC=AB,∴△CAP≌△BAE(SAS),∴CP=BE,∵PE为⊙O的直径,∴∠PBE=90°,在Rt△PBE中,BE2+PB2=PE2=4,∴PC2+PB2=4.17.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC=AD=2,∠ABC=90°.∵△BEC绕点B逆时针旋转90°得△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC,∴∠AFB+∠FAB=90°.∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,AF=FG,∴∠CFG=∠FAB=∠ECB.∴EC∥FG.∵AF=EC,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)∵△ABF≌△CBE,∴FB=BE=AB=1,∴AF==.在△FEC和△CGF中∵EC=FG,∠ECF=∠GFC,FC=CF,∴△FEC≌△CGF,∴S△FEC=S△CGF.∴S阴影=S扇形ABC+S△ABF+S△FGC-S扇形AFG=+×2×1+×(1+2)×1-=-.18.解:(1)证明:如图,过A作AH⊥PD,垂足为H.∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又∵PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD.∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,sin∠P==,PC=2,令CD=2x,PD=3x,由勾股定理得:(3x)2﹣(2x)2=(2)2.解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为×4×2=4,扇形ABE的面积为π×42=4π.∴图中阴影部份的面积为24﹣4﹣4π=20﹣4π.19.证明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切线.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD•EG=OG•EF.(3)∵AB=4BD,∴BC=2BD,设BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.20.(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF=.
相关试卷
这是一份2023年中考数学三轮冲刺考前查漏补缺《整式》(提高版)(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学三轮冲刺考前查漏补缺《实数》(提高版)(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学三轮冲刺考前查漏补缺《探索规律题型》(提高版)(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。