所属成套资源:全套统考版高考数学(文)复习课时学案
统考版高中数学(文)复习2-3函数的奇偶性与周期性学案
展开
这是一份统考版高中数学(文)复习2-3函数的奇偶性与周期性学案,共18页。学案主要包含了必记2个知识点,必明3个常用结论,必练4类基础题等内容,欢迎下载使用。
1.了解函数奇偶性的含义.
2.会运用基本初等函数的图象分析函数的奇偶性.
3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
·考向预测·
考情分析:以理解函数的奇偶性、会用函数的奇偶性为主,其中与函数的单调性、周期性交汇的问题仍是高考考查的热点.题型以选择、填空题为主,中等偏上难度.
学科素养:通过函数奇偶性和周期性的概念考查数学抽象的核心素养;通过函数性质的应用考查直观想象、逻辑推理的核心素养.
积 累 必备知识——基础落实 赢得良好开端
一、必记2个知识点
1.函数的奇偶性
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=________,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中______________的正数,那么这个________就叫做f(x)的最小正周期.
二、必明3个常用结论
1.函数奇偶性常用结论
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.
(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
2.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=1fx,则T=2a(a>0).
(3)若f(x+a)=-1fx,则T=2a(a>0).
3.函数对称性常用结论
(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
(3)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.
三、必练4类基础题
(一)判断正误
1.判断下列说法是否正确(请在括号中打“√”或“×”).
(1)“a+b=0”是“函数f(x)在区间[a,b](a≠b)上具有奇偶性”的必要条件.( )
(2)若函数f(x)是奇函数,则必有f(0)=0.( )
(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.( )
(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
(5)已知函数y=f(x)是定义在R上的偶函数,若在(-∞,0)上是减函数,则在(0,+∞)上是增函数.( )
(6)若T为y=f(x)的一周期,那么nT(n∈Z)是函数f(x)的周期.( )
(二)教材改编
2.[必修1·P36练习T1改编]下列函数为偶函数的是( )
A.f(x)=x-1 B.f(x)=x2+x
C.f(x)=2x-2-x D.f(x)=2x+2-x
3.[必修1·P45复习题B组T4改编]设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=-4x2+2,-1≤x
相关学案
这是一份统考版高中数学(文)复习9-5椭圆学案,共19页。学案主要包含了必记2个知识点,必明4个常用结论,必练4类基础题等内容,欢迎下载使用。
这是一份高考数学统考一轮复习第2章2.3函数的奇偶性与周期性学案,共12页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。
这是一份高考数学统考一轮复习第2章函数第3节函数的奇偶性与周期性学案,共9页。