所属成套资源:新高考数学一轮专题复习(新高考专版)
- 第05讲-函数的单调性与最值(解析版)学案 学案 2 次下载
- 第06讲-函数的奇偶性与周期性(讲义版)学案 学案 1 次下载
- 第07讲 幂函数与二次函数(讲义版)学案 学案 2 次下载
- 第07讲 幂函数与二次函数(解析版)学案 学案 2 次下载
- 第08讲-指数与指数函数(讲义版)学案 学案 2 次下载
第06讲-函数的奇偶性与周期性(解析版)学案
展开
这是一份第06讲-函数的奇偶性与周期性(解析版)学案,共18页。
第06讲-函数的奇偶性与周期性
一、 考情分析
1.结合具体函数,了解奇偶性的概念和几何意义;
2.结合三角函数,了解周期性的概念和几何意义.
二、 知识梳理
1.函数的奇偶性
奇偶性
定义
图象特点
奇函数
设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数
关于原点对称
偶函数
设函数y=g(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数
关于y轴对称
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
[微点提醒]
1.(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
3.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=,则T=2a(a>0).
(3)若f(x+a)=-,则T=2a(a>0).
4.对称性的三个常用结论
(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
(3)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.
三、 经典例题
考点一 判断函数的奇偶性
【例1-1】(1)f(x)=+;
(2)f(x)=;
(3)f(x)=
【解析】 (1)由得x2=3,解得x=±,
即函数f(x)的定义域为{-,},
从而f(x)=+=0.
因此f(-x)=-f(x)且f(-x)=f(x),
∴函数f(x)既是奇函数又是偶函数.
(2)由得定义域为(-1,0)∪(0,1),关于原点对称.
∴x-20时,-x
相关学案
这是一份通用版2020版高考数学大一轮复习第6讲 函数的奇偶性与周期性 学案 含答案,共17页。
这是一份高中数学高考通用版2020版高考数学大一轮复习第6讲函数的奇偶性与周期性学案理新人教A版,共16页。
这是一份通用版高考数学(理数)一轮复习第6讲《函数的奇偶性与周期性》学案(含详解),共17页。