北师大版七年级下册第六章 频率初步1 感受可能性综合训练题
展开第14讲 概率初步
知识点1 随机事件与概率
随机事件的概念
在一定条件下,必然会发生的事件叫必然事件。
在一定条件下,一定不可能发生的事件叫不可能事件。
在一定条件下,可能发生也可能不发生的事件叫随机事件
概率的概念及意义
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必 然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.
②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
【典例】
例1(2020秋•红桥区期末)两个不透明的口袋中分别装有两个完全相同的小球,将每个口袋中的小球分别标号为1和2.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )
A.两个小球的标号之和等于3
B.两个小球的标号之和等于6
C.两个小球的标号之和大于0
D.两个小球的标号之和等于1
【方法总结】
本题考查了随机事件、必然事件、不可能事件,解决此类问题,要掌握三类事件的定义,学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.
例2 (2020秋•仙居县期末)下列语句中描述的事件必然发生的是( )
A.15个人中至少有两个人同月出生
B.一位同学在打篮球,投篮一次就投中
C.在1,2,3,4中任取两个数,它们的和大于7
D.掷一枚硬币,正面朝上
【方法总结】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
例3(2020春•郑州期末)下面是一些可以自由转动的转盘,按照转出黄色的可能性由大到小进行排列正确的是( )
A.②④①③ B.①②③④ C.③①④② D.④①③②
【方法总结】
本题主要考查可能性大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.
例4(2020秋•富裕县期末)已知一个不透明的袋中装有除颜色外完全相同的9个黄球,6个黑球,3个红球.
(1)求从袋中任意摸出一个球是红球的概率.
(2)若要使摸到红球的概率为,则需要在这个口袋中再放入多少个红球?
【方法总结】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
例5(2020秋•路北区期末)甲袋里装有红球5个,白球2个和黑球12个,乙袋里装有红球20个,白球20个和黑球10个.
(1)如果你取出1个黑球,选哪个袋子成功的机会大?请说明理由.
(2)某同学说“从乙袋取出10个红球后,乙袋中的红球个数仍比甲袋中红球个数多,所以此时想取出1个红球,选乙袋成功的机会大.”你认为此说法正确吗?为什么?
【方法总结】
此题主要考查了概率公式,正确应用概率公式是解题关键.
【随堂练习】
1.(2020秋•新抚区期末)下列事件中,是必然事件的是( )
A.汽车走过一个红绿灯路口时,前方正好是绿灯
B.任意买一张电影票,座位号是3的倍数
C.掷一枚质地均匀的硬币,正面向上
D.从一个只有白球的盒子里摸出一个球是白球
2.(2020秋•温州期中)在一个箱子里放有2个白球和5个红球,现摸出1个球是黑球,这个事件属于________事件.(填“必然、不确定或不可能”)
3.(2020春•秦淮区期末)转动如图的转盘(转盘中各个扇形的面积都相等),当它停止转动时,指针指向标有数字________的区域的可能性最小.
4.(2020春•市北区期末)“五•一”期间,某书城为了招徕顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.
(1)写出任意转动一次转盘获得购书券的概率;
(2)写出任意转动一次转盘获得45元,30元,25元的概率.
5.(2020•吉安模拟)手机微信中的抢红包游戏有一种玩法为“拼手气红包”:用户设定好总金额以及红包个数之后,可以生成不等金额的红包.现有四个人组成的微信群中,其中一人发了三个“拼手气红包”,其他三人随机抢红包.
(1)若甲的速度最快,求甲抢到最多金额的红包的概率;
(2)若三个人同时点击红包,记金额最多、居中、最少的红包分别为A、B、C,试求出甲抢到红包A的概率P(A).
6.(2020春•大埔县期末)如图是小华设计的自由转动的转盘,上面写有10个有理数.想想看,转得下列各数的概率是多少?
(1)转得正数;
(2)转得正整数;
(3)转得绝对值小于6的数;
(4)转得绝对值大于等于8的数.
知识点2 用列举法求概率
用列表法和树状图法,求事件的概率
1. 列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.
2. 树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,像树的树丫形式,最末端的树丫个数就是总的可能的结果.
【典例】
例1(2020秋•武功县期末)“诵读经典,传承文明”,为了弘扬中华传统文化,某校近期举办了“国学经典诵读大赛”,诵读的篇目分成四种类型:A.蒙学今诵;B.爱国传承;C.励志劝勉;D.秀山丽水,每种类型的篇目数相同,参赛者需从这四种类型中随机抽取一种诵读类型.
(1)小颖参加了这次大赛,求她恰好抽中“B.爱国传承”的概率;
(2)小红和小明也参加了这次大赛,请用画树状图或列表法求他们抽中同一种类型篇目的概率.
【方法总结】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
例2 (2020秋•喀什地区期末)为改善群众生活环境,促进资源循环,提升全民文明素养,垃圾分类陆续在全国各地开展.如图,垃圾一般可分为可回收物、厨余垃圾、有害垃圾、其它垃圾四类,分别记为A,B,C,D.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶.
(1)直接写出甲扔对垃圾的概率;
(2)请补全所列表格,然后利用表格中的信息求出甲、乙两人同时扔对垃圾的概率.
乙/甲 | A | B | C | D |
A | (A,A) | (B,A) | (C,A) | (D,A) |
B | (A,B) | (________) | (________) | (________) |
C | (A,C) | (________) | (________) | (________) |
D | (A,D) | (B,D) | (C,D) | (D,D) |
【方法总结】
此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
例3(2020秋•淅川县期末)在一个不透明的口袋中有标号为1,2,3,4的四个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.
(1)摸出一个球,摸到标号为奇数的概率为________.
(2)从袋中不放回地摸两次,用列表或树状图求出两球标号数字为偶数的概率.
【方法总结】
本题考查的是用列表法或画树状图法求概率.注意区分放回与不放回实验,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
【随堂练习】
1.(2020秋•定西期末)在定西这块深沉的土地上,处处彰显着文化的韵味.如石器时代的马家窑文化、齐家文化,青铜时代的辛店文化,寺洼文化.现有四张不透明的卡片,它们的背面完全一样,正面分别写有马家窑文化、齐家文化、辛店文化、寺洼文化,将四张卡片背面朝上,洗匀后放在桌子上.
(1)从中随机抽取一张,抽到“辛店文化”的概率为________;
(2)从中随机抽取一张(不放回),接着再随机抽取一张.请通过画树状图或列表法,求抽到的两张卡片所写的都属于石器时代文化的概率.
2.(2020秋•德惠市期末)某班月考后,为了奖励成绩进步的学生,班主任老师准备了三种奖品:A笔记本、B中性笔、C棒棒糖,小文和小明从中随机选取一种奖品,且他们选取每种奖品的可能性相同.
(1)小文选棒棒糖的概率是________.
(2)请用列表或画树状图的方法求出小文和小明选择不同奖品的概率.(可用字母A、B、C代替奖品)
3.(2020秋•锦州期末)小明和小刚打算寒假去北京游玩,他们准备从锦州南站乘坐动车去北京,锦州南站每天开四个检票口,其中有三个电子检票口,分别记为A,B,C,一个人工检票口记为D(如图).
(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为________;
(2)若小明和小刚分别随机选择其中一个检票口进入候车大厅,请用树状图或列表法求他们选择不同电子检票口的概率.
知识点3用频率估计概率
用频率估计概率
实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率
【典例】
例1(2020秋•天河区期末)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数可能是________个.
【方法总结】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
例2(2020•泰州)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到白球的频数 | 72 | 93 | 130 | 334 | 532 | 667 |
摸到白球的频率 | 0.3600 | 0.3100 | 0.3250 | 0.3340 | 0.3325 | 0.3335 |
(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是________.(精确到0.01),由此估出红球有________个.
(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.
【方法总结】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了利用频率估计概率.
【随堂练习】
1.(2020秋•福田区期末)一个不透明的口袋中有红球和黑球共若干个,这些球除颜色外都相同,每次摸出1个球,进行大量的球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率的为________.
2.(2020春•栖霞区期中)某种油菜籽在相同条件下的发芽实验结果如表:
每批粒数n | 100 | 150 | 200 | 500 | 800 | 1000 |
发芽的粒数m | 65 | 111 | 136 | 345 | 560 | 700 |
发芽的频率 | 0.65 | 0.74 | 0.68 | 0.69 | a | b |
(1)a=________,b=________;
(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;
(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?
综合运用
1.(2020•安顺)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )
A. B.
C. D.
2.(2020春•江阴市校级期中)一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )
A.摸出的是红球 B.摸出的是黑球
C.摸出的是绿球 D.摸出的是白球
3.(2020秋•潮州期末)在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_______.
4.(2020春•揭阳期末)在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.
(1)从口袋中任意取出一个球,是一个白球;
(2)从口袋中一次任取5个球,全是蓝球;
(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.
5.(2020春•滕州市校级期末)一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.
(1)判断摸到什么颜色的球可能性最大?
(2)求摸到黄颜色的球的概率;
(3)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?
6.(2020春•泰山区期末)计算下列各题:
如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红、黄、蓝、绿四种颜色,自由转动转盘,请计算:
(1)停止后指针落在蓝色区域的概率;
(2)黄色区域扇形的圆心角度数是多少?
7.(2020春•文山州期末)在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球,其中红球3个,白球5个,黑球若干个.若从中任意摸出一个白球的概率是.
(1)求盒子中黑球的个数;
(2)求任意摸出一个球是黑球的概率;
(3)能否通过改变盒子中球的数量,使得任意摸出一个球是红球的概率为,若能,请写出你的修改方案.
888.(2020秋•抚顺县期末)小智将清华大学、北京大学、复旦大学及浙江大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图.小智将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片;之后将剩余卡片洗匀,再随机抽取一张卡片.
(1)小智第一次抽取的卡片上的图片是浙江大学的概率是多少?(请直接写出结果)
(2)请你用列表或画树状图的方法,帮助小智求出两次抽取的卡片上的大学一个校址是北京、一个校址是上海的概率.(卡片名称可用字母表示,清华大学、北京大学在北京,复旦大学在上海,浙江大学在杭州.)
9.(2020秋•河东区期末)在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.
(1)用树状图或列表法表示所有可能的结果;
(2)求所抽取的两个球数码的乘积为负数的概率.
10.(2020秋•荥阳市期中)从2021年起,很多省份的高考将采用“3+1+2”的模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.
(1)若你在“1”中选择了你喜欢的物理,在“2”中已经选择了你喜欢的化学,则你选择地理的概率为_______.
(2)若小王在“1”中选择了喜欢的历史,请用列表法表示他在“2”中所有可选科目的方案,由于大学后考研必须要考思想政治,小王不想到考研的时候出现知识空档期,而他对其他学科没有特别要求,那么他选择合适科目的概率是多少?
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/1/29 9:07:27;用户:广饶数学;邮箱:chaoyin5@xyh.com;学号:24896626
北师大版七年级下册1 感受可能性课时训练: 这是一份北师大版七年级下册1 感受可能性课时训练,文件包含初一数学北师大版春季班第14讲概率初步--尖子班教师版docx、初一数学北师大版春季班第14讲概率初步--尖子班学生版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
数学七年级下册第六章 频率初步1 感受可能性课后复习题: 这是一份数学七年级下册第六章 频率初步1 感受可能性课后复习题,文件包含初一数学北师大版春季班第14讲概率初步--基础版教师版docx、初一数学北师大版春季班第14讲概率初步--基础班学生版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
初中数学北师大版七年级下册第三章 变量之间的关系2 用关系式表示的变量间关系课堂检测: 这是一份初中数学北师大版七年级下册第三章 变量之间的关系2 用关系式表示的变量间关系课堂检测,文件包含初一数学北师大版春季班第7讲函数--提高班教师版docx、初一数学北师大版春季班第7讲函数--提高班学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。