|试卷下载
终身会员
搜索
    上传资料 赚现金
    中考数学三轮冲刺《解答题》强化练习09(含答案)
    立即下载
    加入资料篮
    中考数学三轮冲刺《解答题》强化练习09(含答案)01
    中考数学三轮冲刺《解答题》强化练习09(含答案)02
    中考数学三轮冲刺《解答题》强化练习09(含答案)03
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学三轮冲刺《解答题》强化练习09(含答案)

    展开
    这是一份中考数学三轮冲刺《解答题》强化练习09(含答案),共10页。


    为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:
    A.唐诗;B.宋词;C.论语;D.三字经.
    比赛形式分“单人组”和“双人组”.
    (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
    (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.
    (1)甲,乙两公司单独完成此项工程,各需多少天?
    (2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
    如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3eq \r(3).
    (1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;
    (2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)
    如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
    (1)求证:CE=AD;
    (2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
    (3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
    如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).
    (参考数据:sin32°≈,cs32°≈,tan32°≈,sin42°≈,cs42°≈,tan42°≈)
    已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
    (1)求证:DE=OE;
    (2)若CD∥AB,求证:BC是⊙O的切线;
    (3)在(2)的条件下,求证:四边形ABCD是菱形.
    如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,eq \f(9,4)),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
    (1)求该抛物线的函数关系表达式.
    (2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
    (3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.
    \s 0 参考答案
    解:
    解①得:x<2,
    解②得:x≥﹣2.
    解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为 SKIPIF 1 < 0 .
    (2)画树状图如下:
    共有12种等可能的情况,其中恰好小红抽中“唐诗”且小明抽中“宋词”的有1种,
    ∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为 SKIPIF 1 < 0 .
    解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
    根据题意,得eq \f(1,x)+eq \f(1,1.5x)=eq \f(1,12),解得x=20,
    经检验,x=20是方程的解且符合题意.
    1.5x=30.
    答:甲公司单独完成此项工程需20天,乙公司需30天.
    (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,
    根据题意,得12(y+y-1 500)=102 000,解得y=5 000.
    甲公司单独完成此项工程所需的施工费为
    20×5 000=100 000(元);
    乙公司单独完成此项工程所需的施工费为
    30×(5 000-1 500)=105 000(元).
    ∴甲公司的施工费较少.
    解:(1)在Rt△OBA中,∠AOB=30°,OB=3eq \r(3),
    ∴AB=OB·tan 30°=3.
    ∴点A的坐标为(3,3eq \r(3)).
    设反比例函数的解析式为y=eq \f(k,x)(k≠0),
    ∴3eq \r(3)=eq \f(k,3),∴k=9eq \r(3),
    则这个反比例函数的解析式为y=eq \f(9\r(3),x).
    (2)在Rt△OBA中,∠AOB=30°,AB=3,
    sin ∠AOB=eq \f(AB,OA),即sin 30°=eq \f(3,OA),∴OA=6.
    由题意得:∠AOC=60°,S扇形AOA′=eq \f(60·π·62,360)=6π.
    在Rt△OCD中,∠DOC=45°,OC=OB=3eq \r(3),
    ∴OD=OC·cs 45°=3eq \r(3)×eq \f(\r(2),2)=eq \f(3\r(6),2).
    ∴S△ODC=eq \f(1,2)OD2=eq \f(1,2)(eq \f(3\r(6),2))2=eq \f(27,4).
    ∴S阴影=S扇形AOA′-S△ODC=6π-eq \f(27,4).
    证明:(1)∵DE⊥BC,
    ∴∠DFB=90°,
    ∵∠ACB=90°,
    ∴∠ACB=∠DFB,
    ∴AC∥DE,
    ∵MN∥AB,即CE∥AD,
    ∴四边形ADEC是平行四边形,
    ∴CE=AD;
    (2)解:四边形BECD是菱形,理由是:∵D为AB中点,
    ∴AD=BD,
    ∵CE=AD,
    ∴BD=CE,
    ∵BD∥CE,
    ∴四边形BECD是平行四边形,
    ∵∠ACB=90°,D为AB中点,
    ∴CD=BD,
    ∴▱四边形BECD是菱形;
    (3)当∠A=45°时,四边形BECD是正方形,理由是:
    ∵∠ACB=90°,∠A=45°,
    ∴∠ABC=∠A=45°,
    ∴AC=BC,
    ∵D为BA中点,
    ∴CD⊥AB,
    ∴∠CDB=90°,
    ∵四边形BECD是菱形,
    ∴菱形BECD是正方形,
    即当∠A=45°时,四边形BECD是正方形.
    解:
    解:(1)如图,连接OD,
    ∵CD是⊙O的切线,
    ∴OD⊥CD,
    ∴∠2+∠3=∠1+∠COD=90°,
    ∵DE=EC,
    ∴∠1=∠2,
    ∴∠3=∠COD,
    ∴DE=OE;
    (2)∵OD=OE,
    ∴OD=DE=OE,
    ∴∠3=∠COD=∠DEO=60°,
    ∴∠2=∠1=30°,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴∠BOC=∠DOC=60°,
    在△CDO与△CBO中,,
    ∴△CDO≌△CBO(SAS),
    ∴∠CBO=∠CDO=90°,
    ∴OB⊥BC,
    ∴BC是⊙O的切线;
    (3)∵OA=OB=OE,OE=DE=EC,
    ∴OA=OB=DE=EC,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴△ABO≌△CDE(AAS),
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴∠DAE=∠DOE=30°,
    ∴∠1=∠DAE,
    ∴CD=AD,
    ∴▱ABCD是菱形.
    解:(1)∵点B是点A关于y轴的对称点,
    ∴抛物线的对称轴为y轴,
    ∴抛物线的顶点为(0,eq \f(9,4)),
    故抛物线的解析式可设为y=ax2+eq \f(9,4).
    ∵A(﹣1,2)在抛物线y=ax2+eq \f(9,4)上,
    ∴a+eq \f(9,4)=2,解得a=﹣eq \f(1,4),
    ∴抛物线的函数关系表达式为y=﹣eq \f(1,4)x2+eq \f(9,4);
    (2)①当点F在第一象限时,如图1,
    令y=0得,﹣eq \f(1,4)x2+eq \f(9,4)=0,解得:x1=3,x2=﹣3,
    ∴点C的坐标为(3,0).
    设直线AC的解析式为y=mx+n,
    则有,解得,
    ∴直线AC的解析式为y=﹣eq \f(1,2)x+eq \f(3,2).
    设正方形OEFG的边长为p,则F(p,p).
    ∵点F(p,p)在直线y=﹣eq \f(1,2)x+eq \f(3,2)上,∴﹣eq \f(1,2)p+eq \f(3,2)=p,解得p=1,
    ∴点F的坐标为(1,1).
    ②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),
    此时点F不在线段AC上,故舍去.
    综上所述:点F的坐标为(1,1);
    (3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.
    ∵点E和点C重合时停止运动,∴0≤t≤2.
    当x=t时,y=﹣eq \f(1,2)t+eq \f(3,2),则N(t,﹣eq \f(1,2)t+eq \f(3,2)),DN=﹣eq \f(1,2)t+eq \f(3,2).
    当x=t+1时,y=﹣eq \f(1,2)(t+1)+eq \f(3,2)=﹣eq \f(1,2)t+1,
    则M(t+1,﹣eq \f(1,2)t+1),ME=﹣eq \f(1,2)t+1.
    在Rt△DEM中,DM2=12+(﹣eq \f(1,2)t+1)2=eq \f(1,4)t2﹣t+2.
    在Rt△NHM中,MH=1,NH=(﹣eq \f(1,2)t+eq \f(3,2))﹣(﹣eq \f(1,2)t+1)=eq \f(1,2),
    ∴MN2=12+(eq \f(1,2))2=eq \f(5,4).
    ①当DN=DM时,(﹣eq \f(1,2)t+eq \f(3,2))2=eq \f(1,4)t2﹣t+2,解得t=eq \f(1,2);
    ②当ND=NM时,﹣eq \f(1,2)t+eq \f(3,2)=eq \f(\r(5),2),解得t=3﹣eq \r(5);
    ③当MN=MD时,eq \f(5,4)=eq \f(1,4)t2﹣t+2,解得t1=1,t2=3.
    ∵0≤t≤2,∴t=1.
    综上所述:当△DMN是等腰三角形时,t的值为eq \f(1,2),3﹣eq \r(5)或1.

    相关试卷

    中考数学三轮冲刺《圆》解答题冲刺练习09(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习09(含答案),共9页。

    2023年中考数学三轮冲刺《解答题》强化练习卷09(含答案): 这是一份2023年中考数学三轮冲刺《解答题》强化练习卷09(含答案),共10页。试卷主要包含了4, 27, 27;,8,∴OA﹣AE=3﹣4,6t)2﹣eq \f﹣4,等内容,欢迎下载使用。

    中考数学三轮冲刺《解答题》强化练习10(含答案): 这是一份中考数学三轮冲刺《解答题》强化练习10(含答案),共9页。试卷主要包含了73,≈1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学三轮冲刺《解答题》强化练习09(含答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map