![2. 2023年中考数学复习 解答题专练二 方程与不等式第1页](http://m.enxinlong.com/img-preview/2/3/13844617/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2. 2023年中考数学复习 解答题专练二 方程与不等式第2页](http://m.enxinlong.com/img-preview/2/3/13844617/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2. 2023年中考数学复习 解答题专练二 方程与不等式第3页](http://m.enxinlong.com/img-preview/2/3/13844617/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学复习之题型专练680道
2. 2023年中考数学复习 解答题专练二 方程与不等式
展开
这是一份2. 2023年中考数学复习 解答题专练二 方程与不等式,共11页。
2023年中考数学复习解答题专练二 方程与不等式1.(2022·杭州中考)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字. 2.(2022·河北中考)整式的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值. 3.(2022·天津中考)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.4.(2022·徐州中考)(1)解方程:;(2)解不等式组: 5.(2022·湖南中考)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.6.(2022·十堰中考)已知关于的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为,,且,求的值. 7.(2022·徐州中考)《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为 ;(2)求兽、鸟各有多少. 8.(2022·泰州中考)如图,在长为50m,宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?9.(2022·重庆中考)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度. 10.(2022·重庆中考)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米? 11.(2022·安顺中考)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,块种植杂交水稻,块种植普通水稻,块试验田比块试验田少4亩.(1)块试验田收获水稻9600千克、块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩块试验田改种杂交水稻? 12.(2022·六盘水中考)钢钢准备在重阳节购买鲜花到敬老院看望老人,现将自己在劳动课上制作的竹篮和陶罐拿到学校的“跳蚤市场”出售,以下是购买者的出价:(1)根据对话内容,求钢钢出售的竹篮和陶罐数量;(2)钢钢接受了钟钟的报价,交易后到花店购买单价为5元/束的鲜花,剩余的钱不超过20元,求有哪几种购买方案. 13.(2022·常州中考)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个进制数143,换算成十进制数是120,求的值. 14.(2022·宁夏中考)某校购进一批篮球和排球,篮球的单价比排球的单价多元.已知元购进的篮球数量和元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共个,总费用不超过元.篮球最多购买多少个? 15.(2022·凉山中考)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m2n+mn2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2= ;x1x2= .(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求的值.
参考答案1.解:(1) ;(2)设被污染的数字为x,由题意,得,解得,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.2.解:(1)∵当时,;(2) ,由数轴可知,即,,解得, 的负整数值为.3.解:(1)(2)(3)把不等式①和②的解集在数轴上表示出来:(4)4.解:(1),,∴,;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.5.解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x-200)km/h,由题意得:x+40=3.5(x-200),解得:x=296.答:高铁的平均速度为296 km/h.6.解:(1),∵,∴,该方程总有两个不相等的实数根;(2)方程的两个实数根,,由根与系数关系可知,,,∵,∴,∴,解得:,,∴,即.7.解:(1)(2)原方程组可化简为,由②可得y=23-2x③,将③代入①得3x+2(23-2x)=38,解得x=8,∴y=23-2x=23-2×8=7.答:兽有8只,鸟有7只.8.解:设道路的宽应为x米,由题意得(50-2x)×(38-2x)=1260解得:x1=4,x2=40(不符合题意,舍去)答:道路的宽应为4m.9.解:(1)设乙的速度为千米/时,则甲的速度为千米/时,由题意得:,解得:,则,答:甲骑行的速度为千米/时;(2)设乙的速度为千米/时,则甲的速度为千米/时,由题意得:,解得,经检验是分式方程的解,则,答:甲骑行的速度为千米/时.10.解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,则有解得∴甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∴两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,即1.2y米则有解得.经检验,是原方程的解,符合题意∴乙施工队原来每天修建灌溉水渠90米.11.解:(1)设普通水稻亩产量是x千克,则杂交水稻的亩产量是2x千克,依题意得:,解得:;经检验,x=600是原方程的解,且符合题意,∴2x=2×600=1200.答:普通水稻亩产量是600千克,杂交水稻的亩产量是1200千克.(2)设把B块试验田改y亩种植杂交水稻,依题意得:9600+600()+1200y≥17700,解得:.答:至少把B块试验田改亩种植杂交水稻.12.解:(1)设钢钢出售的竹篮为个,陶罐为个,由题意得:,解得,答:钢钢出售的竹篮为5个,陶罐为3个.(2)设钢钢购买了束鲜花,由题意得:,解得,因为为正整数,所以共有四种购买方案:①购买9束鲜花;②购买10束鲜花;③购买11束鲜花;④购买12束鲜花.13.解:(1)2022(2)根据题意有:,整理得:,解得n=9,(负值舍去),故n的值为9.14.解:(1)设排球的单价为元,则篮球的单价为元,根据题意得:,解得:,经检验,是原分式方程的解,且符合题意,.篮球的单价为元,排球的单价为元.(2)设购买篮球个,则购买排球个,依题意得:,解得,即的最大值为,最多购买个篮球.15.解:(1) (2)∵一元二次方程2x2-3x-1=0的两根分别为m、n,∴,,∴.(3)∵实数s、t满足2s2-3s-1=0,2t2-3t-1=0,∴s、t可以看作方程2x2-3x-1=0的两个根,∴,,∵∴或,当时,,当时,,综上分析可知,的值为或.
相关试卷
这是一份专题02 解方程与解不等式篇-备考2024年中考数学考点总结+题型专训(全国通用),文件包含专题02解方程与解不等式篇原卷版docx、专题02解方程与解不等式篇解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题01 中考数式计算及解方程解不等式解答题专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版),共10页。试卷主要包含了0+2﹣1,0﹣2tan45°,计算,﹣1;,﹣1|﹣2cs45°;等内容,欢迎下载使用。
这是一份2. 2023年中考数学复习 填空题专练二 方程与不等式,共5页。