![高中数学选择性必修三 6.1分类加法计数原理与分步乘法计数原理 第2课时第1页](http://m.enxinlong.com/img-preview/3/3/13571213/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学选择性必修三 6.1分类加法计数原理与分步乘法计数原理 第2课时第2页](http://m.enxinlong.com/img-preview/3/3/13571213/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第2课时教案设计
展开
这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第2课时教案设计,共5页。
第2课时
课后篇巩固提升
基础达标练
1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )
A.2 160B.720C.240D.120
解析第1张门票有10种分法,第2张门票有9种分法,第3张门票有8种分法,由分步乘法计数原理得共有10×9×8=720(种)分法.
答案B
2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是( )
A.100B.90C.81D.72
解析分两步,第1步选b,因为b≠0,所以有9种不同的选法;第2步选a,因为a≠b,所以也有9种不同的选法.由分步乘法计数原理知共有9×9=81(个)点满足要求.
答案C
3.(2020北京鲁迅中学高二月考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图,
表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:
如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为( )
A.46B.44C.42D.40
解析按每一位算筹的根数分类一共有15种情况,如下,
(5,0,0),(4,1,0),(4,0,1),(3,2,0),(3,1,1),(3,0,2),(2,3,0),(2,2,1),(2,1,2),(2,0,3),(1,4,0),(1,3,1),(1,2,2),(1,1,3),(1,0,4).
2根及2根以上的算筹可以表示两个数字,运用分步乘法计数原理,
则上述情况能表示的三位数字个数分别为
2,2,2,4,2,4,4,4,4,4,2,2,4,2,2.
根据分步加法计数原理,5根算筹能表示的三位数字个数为
2+2+2+4+2+4+4+4+4+4+2+2+4+2+2=44.故选B.
答案B
4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42B.30C.20D.12
解析原定的5个节目产生6个空位,将其中1个新节目插入,有6种不同的插法,然后6个节目产生7个空位,将另一个新节目插入,有7种不同的插法.由分步乘法计数原理知共有7×6=42(种)不同的插法.
答案A
5.(2020天津高二月考)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲、乙不参加同一项,则不同的报名方法种数为 .
解析甲有三个培训可选,甲、乙不参加同一项,所以乙有两个培训可选,丙、丁各有三个培训可选,根据分步乘法计数原理,不同的报名方法种数为3×2×3×3=54.
答案54
6.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x
相关教案
这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计,共4页。教案主要包含了教学内容解析,学生学情分析,教学目标设置,学习目标设置,教学策略分析,教学过程展示,设计意图等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计及反思,共17页。教案主要包含了本节内容分析,学情整体分析,教学活动准备,教学活动设计等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时教案,共5页。