所属成套资源:2023年高考数学(理数)一轮复习课时 达标练习(答案版+教师版)
2023年高考数学(理数)一轮复习课时42《两条直线的位置关系》达标练习(含详解)
展开
这是一份2023年高考数学(理数)一轮复习课时42《两条直线的位置关系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时42《两条直线的位置关系》达标练习含详解doc、2023年高考数学理数一轮复习课时42《两条直线的位置关系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
2023年高考数学(理数)一轮复习课时42《两条直线的位置关系》达标练习一 、选择题1.当0<k<时,直线l1:kx-y=k-1与直线l2:ky-x=2k的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0构成一个三角形,则k的取值范围是( )A.k∈RB.k∈R且k≠±1,k≠0C.k∈R且k≠±5,k≠-10D.k∈R且k≠±5,k≠13.经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为( )A.4x-3y+9=0 B.4x+3y+9=0C.3x-4y+9=0 D.3x+4y+9=04.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.±65.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为,则点P的坐标为( )A.(1,2) B.(2,1) C.(1,2)或(2,-1) D.(2,1)或(-1,2)6.若直线l1:x+3y+m=0(m>0)与直线l2:2x+6y-3=0的距离为,则m=( )A.7 B. C.14 D.177.设a,b,c分别是△ABC中角A,B,C所对的边,则直线sinA·x+ay-c=0与bx-sinB·y+sinC=0的位置关系是( )A.平行 B.重合 C.垂直 D.相交但不垂直8.已知点P(x0,y0)是直线l:Ax+By+C=0外一点,则方程Ax+By+C+(Ax0+By0+C)=0表示( )A.过点P且与l垂直的直线B.过点P且与l平行的直线C.不过点P且与l垂直的直线D.不过点P且与l平行的直线9.已知M={(x,y)|},N={(x,y)}|ax+2y+a=0}且M∩N=⌀,则a=( )A.-2 B.-6 C.2 D.-2或-610.设两条直线的方程分别为x+y+a=0和x+y+b=0,已知a,b是关于x的方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线间距离的最大值为( )A. B. C. D.11.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5]12.已知直线l被两条直线l1:4x+y+3=0和l2:3x-5y-5=0截得的线段的中点为P(-1,2),则直线l的一般式方程为( )A.3x-y+5=0 B.3x+y+1=0C.x-3y+7=0 D.x+3y-5=0二 、填空题13.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为________.14.已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a值为______.15.已知点P在直线x+3y-2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是__________.16.已知动直线l:ax+by+c-2=0(a>0,c>0)恒过点P(1,m)且Q(4,0)到动直线l的最大距离为3,则+的最小值为________.
0.答案解析1.答案为:B.解析:由且0<k<,得两直线的交点坐标为.因为0<k<,所以<0,>0,故两直线的交点在第二象限.2.答案为:C;解析:由l1∥l3,得k=5;由l2∥l3,得k=-5;由x-y=0与x+y-2=0,得x=1,y=1,若(1,1)在l3上,则k=-10.若l1,l2,l3能构成一个三角形,则k≠±5且k≠-10,故选C.3.答案为:A解析:由方程组解得即交点为.∵所求直线与直线3x+4y-7=0垂直,∴所求直线的斜率为k=.由点斜式得所求直线方程为y-=(x+ ),即4x-3y+9=0.故选A.4.答案为:A解析:直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),则即5.答案为:C.解析:设P(x,5-3x),则d==,化简得|4x-6|=2,即4x-6=±2,解得x=1或x=2,故P(1,2)或(2,-1).6.答案为:B;解析:直线l1:x+3y+m=0(m>0),即2x+6y+2m=0,因为它与直线l2:2x+6y-3=0的距离为,所以=,求得m=.7.答案为:C;解析:由题意可得直线sinA·x+ay-c=0的斜率k1=-,bx-sinB·y+sinC=0的斜率k2=,故k1k2=-·=-1,则直线sinA·x+ay-c=0与直线bx-sinB·y+sinC=0垂直,故选C.8.答案为:D.解析:因为点P(x0,y0)不在直线Ax+By+C=0上,所以Ax0+By0+C≠0,所以直线Ax+By+C+(Ax0+By0+C)=0不经过点P,排除A、B;又直线Ax+By+C+(Ax0+By0+C)=0与直线l:Ax+By+C=0平行,排除C,故选D.]9.答案为:D解析:由题意可知,集合M表示过点(2,3)且斜率为3的直线,但除去点(2,3),而集合N表示一条直线,该直线的斜率为-,且过点(-1,0),若M∩N=⌀,则有两种情况:①集合M表示的直线与集合N表示的直线平行,即-=3,解得a=-6;②集合N表示的直线过点(2,3),即2a+2×3+a=0,解得a=-2.综上,a=-2或-6.10.答案为:B;解析:因为a,b是关于x的方程x2+x+c=0的两个实根,所以a+b=-1,ab=c.因为直线x+y+a=0和x+y+b=0之间的距离d=,所以d2==,因为0≤c≤,所以≤1-4c≤1,所以≤≤,即d2∈,所以这两条直线之间的距离的最大值为,故选B.11.答案为:B;12.答案为:B.解析:设直线l与l1的交点为A(x0,y0),由已知条件,得直线l与l2的交点为B(-2-x0,4-y0),并且满足即解得因此直线l的方程为y-2=(x+1),即3x+y+1=0.二 、填空题13.答案为:.解析:直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即3x+4y+=0,∴直线l1与l2的距离为=. 14.答案为:-或-.解析:由题意及点到直线的距离公式,得=,解得a=-或-. 15.答案为:(-∞,- )∪(0,+∞).解析:线段PQ的中点M(x0,y0)的轨迹方程为x0+3y0+2=0,由y0<x0+2,得x0>-2,则==--∈(-∞,- )∪(0,+∞).16.答案为:.解析:因为动直线l:ax+by+c-2=0(a>0,c>0)恒过点P(1,m),所以a+bm+c-2=0,又Q(4,0)到动直线l的最大距离为3,所以=3,解得m=0,所以a+c=2,则+=(a+c)·(+)=≥=,当且仅当c=2a=时取等号.故+的最小值为.
相关试卷
这是一份2023年高考数学(理数)一轮复习课时62《坐标系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时62《坐标系》达标练习含详解doc、2023年高考数学理数一轮复习课时62《坐标系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时56《古典概率》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时56《古典概率》达标练习含详解doc、2023年高考数学理数一轮复习课时56《古典概率》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时46《双曲线》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时46《双曲线》达标练习含详解doc、2023年高考数学理数一轮复习课时46《双曲线》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。