所属成套资源:2023年高考数学(理数)一轮复习课时 达标练习(答案版+教师版)
2023年高考数学(理数)一轮复习课时46《双曲线》达标练习(含详解)
展开
这是一份2023年高考数学(理数)一轮复习课时46《双曲线》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时46《双曲线》达标练习含详解doc、2023年高考数学理数一轮复习课时46《双曲线》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
2023年高考数学(理数)一轮复习课时46《双曲线》达标练习一 、选择题1.已知双曲线C的渐近线方程为y=±2x,且经过点(2,2),则C的方程为( )A.-=1 B.-=1 C.-=1 D.-=12.已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线距离为( )A. B.3 C.m D.3m3.已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.4.已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.-=1 B.-=1 C.-=1 D.-=15.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )A.(1,) B.(1,] C.(,+∞) D.[,+∞)6.若双曲线-=1(a>0,b>0)的一条渐近线方程为y=-2x,则该双曲线的离心率是( )A. B. C. D.27.已知P是双曲线-y2=1上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为点A,B,则·的值是( )A.- B. C.- D.不能确定8.已知A是双曲线-=1(a>0,b>0)的左顶点,F1,F2分别为双曲线的左、右焦点,P为双曲线上一点,G是△PF1F2的重心,若存在实数λ使得=λ,则双曲线的离心率为( )A.3 B.2 C.4 D.与λ的取值有关9.已知O为坐标原点,双曲线-=1(a>0,b>0)上有A,B两点满足OA⊥OB,且点O到直线AB的距离为c,则双曲线的离心率为( )A. B. C. D.10.已知抛物线C1:y2=8ax(a>0),直线l的倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:-=1(a>0,b>0)的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是( )A.2 B. C. D.111.已知A,B,P是双曲线-=1(a>0,b>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA·kPB=3,则该双曲线的离心率为( )A. B. C.2 D.312.已知双曲线-=1(a>0,b>0)的离心率为,过右焦点F作渐近线的垂线,垂足为M.若△FOM的面积为,其中O为坐标原点,则双曲线的方程为( )A.x2-=1 B.-=1 C.-=1 D.-=1二 、填空题13.已知双曲线C:-=1(a>0,b>0)的右焦点为F,过点F作圆(x-a)2+y2=的切线,若该切线恰好与C的一条渐近线垂直,则双曲线C的离心率为________.14.双曲线T:-=1(a>0,b>0)的焦距为10,焦点到渐近线的距离为3,则T的实轴长等于__________.15.已知P是双曲线-=1右支上一点,F1,F2分别为左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标是________.16.已知F1(-c,0)、F2(c,0)为双曲线C:-=1(a>0,b>0)的左、右焦点,过双曲线C的左焦点的直线与双曲线C的左支交于Q,R两点(Q在第二象限内),连接RO(O为坐标原点)并延长交C的右支于点P,若|F1P|=|F1Q|,∠F1PF2=π,则双曲线C的离心率为 .
0.答案解析1.答案为:C.解析:由题意,设双曲线C的方程为-x2=λ(λ≠0),因为双曲线C过点(2,2),则-22=λ,解得λ=-3,所以双曲线C的方程为-x2=-3,即-=1.2.答案为:A;解析:由题意知,双曲线的标准方程为-=1,其中a2=3m,b2=3,故c==,不妨取F(,0),一条渐近线为y= x,化成一般式即为x-y=0,由点到直线的距离公式可得d==,故选A.3.答案为:D.解析:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C的方程,得4-=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP∥x轴,又PF⊥x轴,所以AP⊥PF,所以S△APF=|PF|·|AP|=×3×1=.]4.答案为:B解析:根据双曲线C的渐近线方程为y=x,可知= ①,又椭圆+=1的焦点坐标为(3,0)和(-3,0),所以a2+b2=9 ②,根据①②可知a2=4, b2=5,所以选B.5.答案为:C解析:∵双曲线的一条渐近线方程为y=x,则由题意得>2,∴e=>=.6.答案为:C;解析:由双曲线-=1(a>0,b>0)的渐近线方程为y=±x,且双曲线的一条渐近线方程为y=-2x,得=2,则b=2a,则双曲线的离心率e=====.故选C.7.答案为:A解析:设P(x0,y0),因为该双曲线的渐近线方程分别是-y=0,+y=0,所以可取|PA|=,|PB|=.又cos∠APB=-cos∠AOB=-cos 2∠AOx=-cos=-,所以·=||·||·cos∠APB=·=×=-.故选A.8.答案为:A.解析:由题意,可知|PG|=2|GO|,GA∥PF1,∴2|OA|=|AF1|,∴2a=c-a,∴c=3a,∴e=3.]9.答案为:A.解析:显然直线OA,OB的斜率均存在,且不为0,过点O向AB作垂线,垂足为H.设直线OA的方程为y=kx(k≠0),则直线OB的方程为y=-x,与双曲线方程联立,得得y2=,则x2=,因而|OA|2=,同理|OB|2==,由|OA|×|OB|=|AB|×|OH|及|OA|2+|OB|2=|AB|2可得,|OH|=,即=+,因而=+,即=-,又c2=a2+b2,从而得=,所以e==,故选A.10.答案为:D;解析:抛物线C1的焦点为(2a,0),由弦长计算公式有=16a=16,a=1,所以抛物线C1的标准方程为y2=8x,准线方程为x=-2,故双曲线C2的一个焦点坐标为(-2,0),即c=2,所以b===,渐近线方程为y=±x,直线l的方程为y=x-2,所以点P(0,-2),点P到双曲线C2的一条渐近线的距离为=1,选D.11.答案为:C.解析:由双曲线的对称性知,点A,B关于原点对称,设A(x1,y1),B(-x1,-y1),P(x2,y2),则-=1,-=1,又kPA=,kPB=,所以kPA·kPB===3,所以离心率e==2,故选C.]12.答案为:C;解析:由题意可知e==,可得=,取一条渐近线为y=x,可得F到渐近线y=x的距离d==b,在Rt△FOM中,由勾股定理可得|OM|===a,由题意可得ab=,联立解得所以双曲线的方程为-=1.故选C.二 、填空题13.答案为:2.解析:不妨取与切线垂直的渐近线方程为y=x,由题意可知该切线方程为y=-(x-c),即ax+by-ac=0.又圆(x-a)2+y2=的圆心为(a,0),半径为,则圆心到切线的距离d===,又e=,则e2-4e+4=0,解得e=2.14.答案为:8.解析:双曲线的焦点(0,5)到渐近线y=x,即ax-by=0的距离为==b=3,所以a=4,2a=8.15.答案为:a.解析:如图所示,内切圆圆心M到各边的距离分别为|MA|,|MB|,|MC|,切点分别为A,B,C,由三角形的内切圆的性质则有:|CF1|=|AF1|,|AF2|=|BF2|,|PC|=|PB|,所以|PF1|-|PF2|=|CF1|-|BF2|=|AF1|-|AF2|=2a,又|AF1|+|AF2|=2c,所以|AF1|=a+c,则|OA|=|AF1|-|OF1|=a.因为M的横坐标和A的横坐标相同,所以M的横坐标为a.16.答案为:.解析:如图,设|PF1|=x,则|PF2|=x-2a,作Q关于原点对称的点S,连接PS,RS,SF1.因为双曲线关于原点中心对称,所以|PO|=|OR|,S在双曲线上,所以四边形PSRQ是平行四边形,根据对称性知,F2在线段PS上,|F2S|=|QF1|=x,则∠F1PS=,根据双曲线的定义,有|F1S|=x+2a,所以在△PF1S中,由余弦定理得(x+2a)2=x2+(2x-2a)2-2·x(2x-2a)·(- ),解得x=a,所以|PF2|=a,所以在△PF1F2中,由余弦定理得4c2=(a)2+(a)2-2×(- )×a×a,整理可得e==.
相关试卷
这是一份2023年高考数学(理数)一轮复习课时62《坐标系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时62《坐标系》达标练习含详解doc、2023年高考数学理数一轮复习课时62《坐标系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时56《古典概率》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时56《古典概率》达标练习含详解doc、2023年高考数学理数一轮复习课时56《古典概率》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时45《椭圆》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时45《椭圆》达标练习含详解doc、2023年高考数学理数一轮复习课时45《椭圆》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。