![2022年中考数学二轮专题《四边形》解答题专项练习04(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12933806/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学二轮专题《四边形》解答题专项练习04(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12933806/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学二轮专题《四边形》解答题专项练习04(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12933806/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年中考数学二轮专题《四边形》解答题专项练习(含答案)
2022年中考数学二轮专题《四边形》解答题专项练习04(含答案)
展开
这是一份2022年中考数学二轮专题《四边形》解答题专项练习04(含答案),共6页。试卷主要包含了E为CD边上一点,CE=6等内容,欢迎下载使用。
2022年中考数学二轮专题《四边形》解答题专项练习041.如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF. 求证:四边形ADCF是平行四边形. 2.如图,□ABCD的对角线相交于点O,EF过点O分别与AD,BC相交于点E,F.(1)求证:△AOE≌△COF;(2)若AB=4,BC=7,OE=3,试求四边形EFCD的周长. 3.如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明. 4.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.(1)求证:AC=EF;(2)求证:四边形ADFE是平行四边形. 5.在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为 .探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长. 6.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6. (1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?
7.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由. 8.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为 s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为 s时,四边形ACFE是菱形.
0.答案解析1.证明:∵AF∥BC,∴∠AFE=∠EBD. 在△AEF和△DEB中∵,∴△AEF≌△DEB(AAS). ∴AF=BD. ∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形. 2.(1)证明:∵AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,OA=OC,在△AOE和△COF中,,∴△AOE≌△COF.(2)∵△AOE≌△COF∴AE=FC,OF=OE又∵在ABCD中,BC=AD CD=AB∴FC+DE=AE+ED=AD=BC=7∴S四边形EFCD=EF+FC+CD+ED=6+7+4=17 3.解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF. 4.证明:(1)∵△ABE是等边三角形,∴AB=AE,∠EAF=60º,又∵∠BAC=30º,∠ACB=90º,∴∠ACB=60º, ∴∠EAF=∠ACB,又∵∠ACB=∠AEF=90 º,∴△ABC≌△EAF.∴AC=EF.(2)∵△ADC是等边三角形,∴AD=AC,∠DAC=60º,∴AD= EF, 又∵∠CAB=30º,∴∠DAB=90º,∵∠AEF=90 º,∴AD∥EF ∴四边形ADFE是平行四边形. 5.【解答】解:①AF=DE;②AF=DE,证明:∵∠A=∠FEC=∠D=90°,∴∠AEF=∠DCE,在△AEF和△DCE中,,∴△AEF≌△DCE,∴AF=DE.③∵△AEF≌△DCE,∴AE=CD=AB=2,AF=DE=3,FB=FA﹣AB=1,∵BG∥AD,∴=,∴BG=.6.(1) 5 (2) 或或 7.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.8. (1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是:或8;8.
相关试卷
这是一份2022年中考数学二轮专题《四边形》解答题专项练习10(含答案),共7页。试卷主要包含了5AC,AD=CD,,5,0);N;等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习08(含答案),共7页。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习07(含答案),共8页。