所属成套资源:2022年中考数学二轮专题《四边形》解答题专项练习(含答案)
2022年中考数学二轮专题《四边形》解答题专项练习02(含答案)
展开
这是一份2022年中考数学二轮专题《四边形》解答题专项练习02(含答案),共7页。试卷主要包含了∴∠ACB=90°,5PC等内容,欢迎下载使用。
2022年中考数学二轮专题《四边形》解答题专项练习021.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF. 求证:四边形BFDE是平行四边形. 2.如图,已知在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明). 3.如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.(1)求证:四边形ABFE是平行四边形;(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长. 4.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小。 5.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形. 6.如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围. 7.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是 ,位置关系是 ;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明. 8.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(﹣2,1),点B(1,n).(1)求此一次函数和反比例函数的解析式;(2)请直接写出满足不等式kx+b﹣<0的解集;(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E(﹣a,a),如图,当曲线y=(x<0)与此正方形的边有交点时,求a的取值范围.
0.答案解析1.证明:∵□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,
∴AO=CO,BO=DO,∵AE=CF,∴AF=EC,则FO=EO,∴四边形BFDE是平行四边形.2.解:(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°.∵M为AD的中点,∴AM=DM.在△ABM和△DCM中,AM=DM,∠A=∠D,AB=CD∴△ABM≌△DCM(SAS).(2)四边形MENF是菱形.∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM,∴NE=FM,∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴BM=CM.∵E、F分别是BM、CM的中点,∴ME=BM,MF=MC,∴ME=MF,∴平行四边形MENF是菱形.(3)2:1. 3.(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.∴∠D=∠BCF.在Rt△ADE和Rt△BCF中,∴Rt△ADE≌Rt△BCF.∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.在Rt△ABE中,AE=3,BE=4,AB=.∵四边形ABFE是平行四边形,∴EF=AB=5. 4.答案为:45°;解析:如图,连接AC,则AC=BD=CF,所以∠F=∠5而且∠1=∠3∠4=∠6-∠7=∠BEF+∠F-∠7=90°-∠7+∠F=∠1+∠F=∠3+∠5=∠2∴∠4=∠2=45°,∴∠BAF的度数为45°。5.证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD.∴∠AOD=90°.∴四边形AODE是矩形. 6. (1)四边形PECF是矩形.理由如下:在△ABC中,AC=3,BC=4,AB=5,
∴AC2+BC2=32+42=52=AB2.∴∠ACB=90°. ∵PE⊥AC,PF⊥BC,∴∠PEC=∠ACB=∠CFP=90°.∴四边形PECF是矩形.(2)CM的长度会改变.理由:连接PC,由(1)证得四边形PECF是矩形, ∵M是EF的中点,∴M在PC上且EF=PC,CM=0.5PC. 过点C作CD⊥AB,当CD=PC时PC最小,此时PC=2.4. ∵点P在斜边AB上(不与A、B重合),∴PC<BC=4.
∴PC的范围是2.4≤PC<4,即EF的范围是2.4≤EF<4.
∴CM的范围是1.2≤CM<2. 7. 8.【解答】解:(1)∵点A(﹣2,1)在反比例函数y=的图象上,∴m=﹣2×1=﹣2,∴反比例函数解析式为y=﹣;∵点B(1,n)在反比例函数y=﹣的图象上,∴﹣2=n,即点B的坐标为(1,﹣2).将点A(﹣2,1)、点B(1,﹣2)代入y=kx+b中得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)不等式﹣x﹣1﹣(﹣)<0可变形为:﹣x﹣1<﹣,观察两函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例图象下方,∴满足不等式kx+b﹣<0的解集为﹣2<x<0或x>1.(3)过点O、E作直线OE,如图所示.∵点E的坐标为(﹣a,a),∴直线OE的解析式为y=﹣x.∵四边形EFDG是边长为1的正方形,且各边均平行于坐标轴,∴点D的坐标为(﹣a+1,a﹣1),∵a﹣1=﹣(﹣a+1),∴点D在直线OE上.将y=﹣x代入y=﹣(x<0)得:﹣x=﹣,即x2=2,解得:x=﹣,或x=(舍去).∵曲线y=﹣(x<0)与此正方形的边有交点,∴﹣a≤﹣≤﹣a+1,解得:≤a≤+1.故当曲线y=(x<0)与此正方形的边有交点时,a的取值范围为≤a≤+1.
相关试卷
这是一份2022年中考数学二轮专题《四边形》解答题专项练习10(含答案),共7页。试卷主要包含了5AC,AD=CD,,5,0);N;等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习09(含答案),共8页。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习07(含答案),共8页。