所属成套资源:2022年中考数学二轮专题《四边形》解答题专项练习(含答案)
2022年中考数学二轮专题《四边形》解答题专项练习01(含答案)
展开
这是一份2022年中考数学二轮专题《四边形》解答题专项练习01(含答案),共6页。试卷主要包含了E为CD边上一点,CE=6等内容,欢迎下载使用。
2022年中考数学二轮专题《四边形》解答题专项练习011.如图,已知△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°。(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少? 3.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB. 4.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF. 5.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证D是BC的中点;(2)如果AB=AC,试判断四边形AFBD是什么四边形,并证明你的结论. 6.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长. 7.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6. (1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形? 8.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.
0.答案解析1.提示:证四边形AFCE是平行四边形.2.(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF∶∠FDC=3∶2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°,∴∠BDF=∠ODC﹣∠FDC=18°.3.解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.4.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF. 5.证明:(1)证明:∵AF∥BD,∴∠AFE=∠DCE.∵E是AD的中点,∴AE=DE. 又∵∠AEF=∠DEC,∴△AEF≌△DEC(AAS). ∴DC=AF. 又∵AF=BD,∴BD=DC.∴D是BC的中点. (2)答:四边形AFBD是矩形. 证明:∵AF=BD,AF∥BD, ∴四边形AFBD是平行四边形. ∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°. ∴四边形AFBD是矩形. 6.(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.7.解:(1)5;(2)t=29/6或t=4或t=3. 8. (1)证明:∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠可知,AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.∴∠B=∠AFG=90°.又∵AG=AG,∴Rt△ABG≌Rt△AFG(H.L.).(2)解:∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6-x,∵E为CD的中点,∴EF=DE=CE=3,∴EG=x+3,在Rt△CEG中,由勾股定理,得32+(6-x)2=(x+3)2,解得x=2,∴BG=2.
相关试卷
这是一份2022年中考数学二轮专题《四边形》解答题专项练习10(含答案),共7页。试卷主要包含了5AC,AD=CD,,5,0);N;等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习09(含答案),共8页。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习07(含答案),共8页。