所属成套资源:2022年中考数学二轮专题《四边形》解答题专项练习(含答案)
2022年中考数学二轮专题《四边形》解答题专项练习03(含答案)
展开
这是一份2022年中考数学二轮专题《四边形》解答题专项练习03(含答案),共7页。
2022年中考数学二轮专题《四边形》解答题专项练习03 1.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形. 2.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= . 3.如图1,矩形ABCD中,AB=6,BC=8,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2,(1)求证:AE=EF;(2)延长EF交矩形∠BCD的外角平分线CP于点P(图2),试求AE与EP的数量关系; 4.如图,在正方形ABCD中,E在BC上,以AE边作等腰Rt△AEF,∠AEF=90°,AE=EF,FG⊥BC于G.(1)如图1,求证:GF=CG;(2)如图2,AF交CD于点M,EF交CD于点N,当BE=3,DM=2时,求线段NC的长. 5.如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.(1)求证:△ABE∽△FDE;(2)当BE=3DE时,求tan∠1的值. 6.如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M,N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗? 7.如图,已知等边三角形ABC和正方形BDEC的边长均为2,⊙O经过点A,D,E三点.求:⊙O的半径. 8.如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC.AD于点E和F,EF交AC于点O.(1)求证:四边形AECF是菱形;(2)若AC=8,EF=6,求BC的长.
0.答案解析1.证明:∵AF∥BC,∴∠EAF=∠ECD,∠EFA=∠EDC,又∵E是AC的中点,∴AE=CE,∴△AEF≌△CED.∴AF=CD,又AF∥CD,∴四边形ADCF是平行四边形.∵AC=2AB,E为AC的中点,∴AE=AB,由已知得∠EAD=∠BAD,又AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形. 2.解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B∴DF=BF∴DE+DF=AB=AC; (2)图②中:AC+DE=DF.图③中:AC+DF=DE. (3)当如图①的情况,DF=AC﹣DE=6﹣4=2;当如图②的情况,DF=AC+DE=6+4=10.3. 4.【解答】解:(1)四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵FG⊥BC,∴∠EGF=90°,在△ABE和△EGF中,∴△ABE≌△EGF,∴GF=BE,EG=AB,∵AB=BC,∴BC=EG,∴BE=CG,∴GF=CG,(2)如图2,过F作FH⊥CD,则∠FHC=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠FHC=∠BCD,∴FH∥BC∥AD,∴∠HFN=∠GEF,由(1)知,∠GEF=∠BAE,∴∠BAE=∠HFN,∵∠FHN=∠ABE=90°,∴△ABE∽△FHN,∴∵AD∥HF,∴,∵AB=AD,∴,∵BE=3,DM=2,∴,设HN=x,则HM=x,∵∠HCG=∠CGF=∠CHF=90°,∴四边形CGFH是矩形,∵CG=FG,∴矩形CGFH是正方形,∴HF=CH=CG=BE=3,∴CN=3﹣x,∴BC=CD=CH+HM+DM=3+x+2=5+x,∴EC=BC﹣BE=5+x﹣3=x+2,∵∠CNE=∠HNF,∠ECN=∠FHN=90°,∴△ECN∽△FHN,∴,∴,∴x=或x=﹣9(舍),∴NC=3﹣x=.5.(1)证明:在正方形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,在△ABE与△CBE中,,∴△ABE≌△CBE,∴∠BAE=∠ECB,∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;(2)连接AC交BD于O,设正方形ABCD的边长为a,∴BD=a,BO=OD=OC=a,∵BE=3DE,∴OE=OD=a,∴tan∠1=tan∠OEC==. 6.OE=OF; 7.解:如图2,作AF⊥BC,垂足为F,并延长AF交DE于H点.∵△ABC为等边三角形,∴AF垂直平分BC,∵四边形BDEC为正方形,∴AH垂直平分正方形的边DE.又∵DE是圆的弦,∴AH必过圆心,记圆心为O点,并设⊙O的半径为r.在Rt△ABF中,∵∠BAF=30°,∴AF=AB•cos30°=2×.∴OH=AF+FH﹣OA=+2﹣r.在Rt△ODH中,OH2+DH2=OD2.∴(2+﹣r)2+12=r2.解得r=2.∴该圆的半径长为2. 8.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形∴OC=AC=4,OE=EF=3∴CE===5,∵∠COE=∠ABC=90,∠OCE=∠BCA,∴△COE∽△CBA,∴=,∴=,∴BC=6.4.
相关试卷
这是一份2022年中考数学二轮专题《四边形》解答题专项练习10(含答案),共7页。试卷主要包含了5AC,AD=CD,,5,0);N;等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习09(含答案),共8页。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习07(含答案),共8页。