所属成套资源:2021-2022学年高二数学新教材知识讲学(人教A版选择性必修第一册)
- 专题12 直线与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案 学案 0 次下载
- 专题13 圆与圆的位置关系 核心素养练习 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题14 第二章 复习与检测 核心素养练习 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题14 第二章 复习与检测 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题15 椭圆及其标准方程(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
专题13 圆与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案
展开
这是一份专题13 圆与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案,文件包含专题13圆与圆的位置关系知识精讲解析版docx、专题13圆与圆的位置关系知识精讲原卷版docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。
专题十三 圆与圆的位置关系一 知识结构图内 容考点关注点圆与圆的位置关系圆与圆的位置关系判断两圆的位置关系 二.学法指导1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.过两圆的交点的圆的方程已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).3.判断两圆的位置关系的方法(1)由两圆的方程组成的方程组有几个实数解确定,这种方法计算量比较大,一般不用.(2)依据圆心距与两圆半径的和或两圆半径的差的绝对值的大小关系.相交⇔|R-r|<d<R+r.相切相离(特别地d=0时,两圆为同心圆)4.当两圆相交时,把两圆的方程作差消去x2和y2就得到两圆的公共弦所在的直线方程.即若圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则两圆公共弦所在直线的方程为(D1-D2)x+(E1-E2)y+F1-F2=0.三.知识点贯通知识点1 圆与圆的位置关系的判断圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0<d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.一元二次方程 例题1.当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、外离?【解析】 将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2=(k<50),从而|C1C2|==5.当1+=5,即k=34时,两圆外切.当|-1|=5,即=6,即k=14时,两圆内切.当|-1|<5<1+,即14<k<34时,两圆相交.当+1|<5,即34<k<50时,两圆外离.知识点二 两圆相切问题处理两圆相切问题的两个步骤(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).例题2:求半径为4,与圆(x-2)2+(y-1)2=9相切,且和直线y=0相切的圆的方程.【解析】 设所求圆的方程为(x-a)2+(y-b)2=16,由圆与直线y=0相切、半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).已知圆(x-2)2+(y-1)2=9的圆心A的坐标为(2,1),半径为3.由两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当圆心为C1(a,4)时,(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±2,故所求圆的方程为(x-2-2)2+(y-4)2=16或(x-2+2)2+(y-4)2=16.②当圆心为C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),解得a=2±2.故所求圆的方程为(x-2-2)2+(y+4)2=16或(x-2+2)2+(y+4)2=16.综上所述,所求圆的方程为(x-2-2)2+(y-4)2=16或(x-2+2)2+(y-4)2=16或(x-2-2)2+(y+4)2=16或(x-2+2)2+(y+4)2=16.知识点三 两圆相交问题求两圆公共弦长的方法一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.例题3 .已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.【解析】 (1)设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组的解.①-②,得x-y+4=0.∵A,B两点坐标都满足此方程,∴x-y+4=0即为两圆公共弦所在直线的方程.(2)解方程组得两圆的交点A(-1,3),B(-6,-2).设所求圆的圆心为(a,b),因圆心在直线x-y-4=0上,故b=a-4.则=,解得a=,故圆心为,半径为.故圆的方程为+=,即x2+y2-x+7y-32=0.五 易错点分析易错一 判断两圆相交例题4.圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系为( )A.相离 B.相交 C.外切 D.内切【答案】B 【解析】圆O1的圆心坐标为(1,0),半径长r1=1;圆O2的圆心坐标为(0,2),半径长r2=2;1=r2-r1<|O1O2|=<r1+r2=3,即两圆相交.误区警示
两圆相交,圆心距大于两圆半径的差,小于两圆半径的和。