![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12716497/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12716497/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12716497/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题
展开这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共27页。试卷主要包含了在平面直角坐标系中,点,一只跳蚤在第一象限及x轴,点M,点A个单位长度.等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )
A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.
2、平面直角坐标系中,下列在第二象限的点是( )
A. B. C. D.
3、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )
A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
4、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)
5、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
6、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
A. B. C. D.
7、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )
A.(4,0) B.(5,0) C.(0,5) D.(5,5)
8、点M(3,2)关于y轴的对称点的坐标为( )
A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)
9、点A(-3,1)到y轴的距离是( )个单位长度.
A.-3 B.1 C.-1 D.3
10、如图,每个小正方形的边长为1,在阴影区域的点是( )
A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点在直角坐标系的轴上,等于 ____.
2、已知点在轴上,则________;点的坐标为________.
3、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.
4、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.
5、在平面直角坐标系中点M(2,﹣4)关于原点对称的点的坐标为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,三个顶点的坐标分别是.
(1)请画出关于x轴对称的图形;
(2)求的面积;
(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.
2、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).
(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;
(2)点A2的坐标为 ;
(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 .
3、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;
(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.
4、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.
5、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
6、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)写出点A1 ,B1 ,C1 的坐标.
7、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.
8、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>伴随图形.
例如:点P(2,1)的<x轴,y轴>伴随图形是点P'(-2,-1).
(1)点Q(-3,-2)的<x轴,y轴>伴随图形点Q'的坐标为 ;
(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
①当t=-1,且直线m与y轴平行时,点A的<x轴,m>伴随图形点A'的坐标为 ;
②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
9、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.
(1)点的坐标是______;
(2)画出关于轴对称的,其中点、、的对应点分别为点、、;
(3)直接写出的面积为______.
10、在平面直角坐标系中,的顶点坐标是、、.
(1)画出绕点B逆时针旋转的;
(2)画出关于点O的中心对称图形;
(3)可由绕点M旋转得,请写出点M的坐标:________.
-参考答案-
一、单选题
1、B
【分析】
根据有序数对的性质解答.
【详解】
解:能准确表示上海市地理位置的是东经,北纬,
故选:B.
【点睛】
此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.
2、C
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、A
【分析】
根据点F点N关于原点对称,即可求解.
【详解】
解:∵F点与N点关于原点对称,点F的坐标是(3,2),
∴N点坐标为(﹣3,﹣2).
故选:A
【点睛】
本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
4、A
【分析】
根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
【详解】
解:∵点(2,﹣5)关于x轴对称,
∴对称的点的坐标是(2,5).
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
5、B
【分析】
利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
【详解】
解:∵ A(-4,3) ,
∴关于y轴对称点B的坐标为(4,3).
故答案为:B.
【点睛】
本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
6、C
【分析】
根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
【详解】
解:点的坐标是,点与点关于轴对称,
的坐标为,
故选:C.
【点睛】
本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
7、C
【分析】
根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
【详解】
解:由题意可知,质点每秒移动一个单位
质点到达(1,0)时,共用3秒;
质点到达(2,0)时,共用4秒;
质点到达(0,2)时,共用4+4=8秒;
质点到达(0,3)时,共用9秒;
质点到达(3,0)时,共用9+6=15秒;
以此类推,质点到达(4,0)时,共用16秒;
质点到达(0,4)时,共用16+8=24秒;
质点到达(0,5)时,共用25秒;
故选:C.
【点睛】
本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
8、A
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点(3,2)关于y轴的对称点的坐标是(-3,2).
故选:A.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
9、D
【分析】
由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
【详解】
解:由题意知到轴的距离为
到轴的距离是个单位长度
故选D.
【点睛】
本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
10、C
【分析】
根据平面直角坐标系中点的坐标的表示方法求解即可.
【详解】
解:图中阴影区域是在第二象限,
A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;
B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;
C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;
D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.
故选:C.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
二、填空题
1、-1
【分析】
让纵坐标为0得到m的值,计算可得点P的坐标.
【详解】
解:∵点P(3,m+1)在直角坐标系x轴上,
∴m+1=0,
解得m=-1,
故选:-1.
【点睛】
考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
2、
【分析】
根据轴上的点,纵坐标为0,求出m值即可.
【详解】
解:∵点在轴上,
∴,
解得,,
则;
点的坐标为(-2,0);
故答案为:-3,(-2,0).
【点睛】
本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
3、5
【分析】
首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.
【详解】
解:如图所示,
过A点作AD垂直x轴于D点,则h=2,
∴.
故答案为:5.
【点睛】
本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.
4、 (4,0)或(﹣2,2)
【分析】
利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.
【详解】
解:如图,点B绕点D旋转90°到达点B′或B″,
点B′的坐标为(4,0),B″(﹣2,2).
故答案为:(4,0)或(﹣2,2).
【点睛】
本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.
5、
【分析】
根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.
【详解】
解:点M(2,﹣4)关于原点对称的点的坐标为
故答案为:
【点睛】
本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.
三、解答题
1、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为
【分析】
(1)找到关于轴对称的点,顺次连接,则即为所求;
(2)根据网格的特点,根据即可求得的面积;
(3)连接,与轴交于点,根据对称性即可求得,点即为所求.
【详解】
解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图
(2)
(3)根据作图可知,P点的坐标为
【点睛】
本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.
2、(1)见详解;(2)(1,2);(3)(-a,-b).
【分析】
(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;
(2)根据图示得出坐标即可;
(3)根据轴对称的性质得出坐标即可.
【详解】
解:(1)如图所示:
线段A1B1和线段A2B2即为所求;
(2) 点A2的坐标为(1,2);
(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).
【点睛】
本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.
3、(1)见解析;(2)见解析;(3)(﹣4,﹣3)
【分析】
(1)分别作出A,B,C 的对应点A1,B1,C1即可.
(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
(3)根据所画图形,直接写出坐标即可.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)点B2的坐标为(﹣4,﹣3).
【点睛】
本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、图见解析,面积为2
【分析】
先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.
【详解】
解:∵的顶点坐标分别为,绕点顺时针旋转,得到,
∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),
∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),
∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),
在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),
顺次连结A1B1, B1C1,C1A1,
则△A1B1C1为所求;
,
=,
=,
=2.
【点睛】
本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.
5、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
6、(1)见解析;(2)(1,5),(3,0),(4,3)
【分析】
(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)结合(1)即可写出点A1,B1,C1的坐标.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)A1(1,5),B1(3,0),C1(4,3);
故答案为:(1,5),(3,0),(4,3).
【点睛】
本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.
7、(1)图见解析;A1(3,3);(2)见解析
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);
(2)如图所示:△A2B2C2,即为所求.
【点睛】
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
8、
(1)(3,2)
(2)①(3,-1);②-1<t<1或2<t<4
【分析】
(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
(2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
(1)
解:由题意知沿轴翻折得点坐标为;
沿轴翻折得点坐标为
故答案为:.
(2)
①解:.,点坐标为,直线为,
沿轴翻折得点坐标为
沿直线翻折得点坐标为即为
故答案为:
②解:∵直线经过原点
∴直线为
∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
然后沿直线翻折,点坐标依次表示为:,,
由题意可知:或
解得:或
【点睛】
本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
9、(1);(2)见解析;(3)12
【分析】
(1)根据平面直角坐标系写出点的坐标即可;
(2)找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)根据正方形的面积减去三个三角形的面积即可求得的面积
【详解】
(1)根据平面直角坐标系可得的坐标为,
故答案为:
(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)的面积为
故答案为:
【点睛】
本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.
10、(1)画图见解析;(2)画图见解析;(3)
【分析】
(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;
(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;
(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.
【详解】
解:(1)如图,是所求作的三角形,
(2)如图,是所求作的三角形;
(3)如图,;是旋转对应点,
到旋转中心的距离相等,到旋转中心的距离相等,
则线段的垂直平分线的交点即为旋转中心,其坐标为:
【点睛】
本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了点A的坐标为,则点A在,在平面直角坐标系中,点P,点P在第二象限内,P点到x,已知点A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共29页。试卷主要包含了如图,A,若点P,已知点A,点P关于原点对称的点的坐标是,点P等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共30页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。