![2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12721883/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12721883/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12721883/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练
展开这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了若点P,已知点在一等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A. B. C. D.
2、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
A.陇海路以北 B.工人路以西
C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
3、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
A.5 B.1 C. D.
5、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )
A.先向左平移4个单位长度,再向上平移4个单位长度
B.先向左平移4个单位长度,再向上平移8个单位长度
C.先向右平移4个单位长度,再向下平移4个单位长度
D.先向右平移4个单位长度,再向下平移8个单位长度
6、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
7、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
A. B. C. D.
8、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
9、已知点在一、三象限的角平分线上,则的值为( )
A. B. C. D.
10、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )
A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点在轴上,则点的坐标为________.
2、已知点M(x,3)与点N(﹣2,y)关于x轴对称,则x+y=_____.
3、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.
4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.
5、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.
三、解答题(10小题,每小题5分,共计50分)
1、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
2、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)求△A1B1C1的面积.
3、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.
4、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
6、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
(1)△ABC的面积为 ;
(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)
7、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),
(1)写出A、B两点的坐标;
(2)画出△ABC关于y轴对称的△A1B1C1 ;
(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
8、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.
9、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
(1)在图中作出DEF,使得DEE与ABC关于x轴对称;
(2)写出D,E两点的坐标:D ,E .
(3)求DEF的面积.
10、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).
(1)作△ABC关于y轴对称后的△A′B′C′,并写出A′,B′,C′的坐标;
(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.
-参考答案-
一、单选题
1、B
【分析】
根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
故选:B.
【点睛】
此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
2、D
【分析】
根据位置的确定需要两个条件:方向和距离进行求解即可.
【详解】
解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
B、工人路以西只有方向,不能确定位置,故不符合题意;
C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
故选D.
【点睛】
本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
3、C
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4、D
【分析】
点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
【详解】
∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
∴a=-3,b=-2,
∴-5,
故选D.
【点睛】
本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
5、B
【分析】
利用平移中点的变化规律求解即可.
【详解】
解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),
∴点的横坐标减少4,纵坐标增加8,
∴先向左平移4个单位长度,再向上平移8个单位长度.
故选:B.
【点睛】
本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
6、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
7、C
【分析】
根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
【详解】
解:点的坐标是,点与点关于轴对称,
的坐标为,
故选:C.
【点睛】
本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
8、A
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
9、A
【分析】
根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;
【详解】
∵点在一、三象限的角平分线上,
∴,
∴;
故选A.
【点睛】
本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.
10、B
【分析】
根据有序数对的性质解答.
【详解】
解:能准确表示上海市地理位置的是东经,北纬,
故选:B.
【点睛】
此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.
二、填空题
1、(10,0)
【分析】
利用点在轴上的坐标特征,得到纵坐标为0,求出的值,代入横坐标,即可求出点坐标.
【详解】
解:点在轴上,
,故,
点横坐标为10,
故点坐标为(10,0).
故答案为:(10,0).
【点睛】
本题主要是考查了轴上点的坐标特征,熟练掌握轴上的点的纵坐标为0,是解题的关键.
2、﹣5
【分析】
利用关于x轴对称的点的坐标特点可得x、y的值,进而可得答案.
【详解】
解:∵点M(x,3)与点N(﹣2,y)关于x轴对称,
∴x=﹣2,y=﹣3,
∴x+y=﹣5,
故答案为:﹣5.
【点睛】
本题考查了坐标与图象变化的轴对称问题,如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数.相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变.
3、(1,﹣1)
【分析】
先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.
【详解】
∵点A的坐标为(1,0),
∴OA=1,
∵四边形OABC是正方形,
∴∠OAB=90°,AB=OA=1,
∴B(1,1),
连接OB,如图:
由勾股定理得:OB=,
由旋转的性质得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,
发现是8次一循环,则2022÷8=252…6,
∴点B2022的坐标为(1,﹣1),
故答案为:(1,﹣1).
【点睛】
本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.
4、-1
【分析】
直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
【详解】
解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=﹣4,b=-3,
则a-b=-4+3=-1.
故答案为:﹣1.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
5、(2,-5)
【分析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).
故答案为:(2,-5).
【点睛】
本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.
三、解答题
1、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
2、(1)图形见解析;(2)5
【分析】
(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;
(2)利用割补法求△A1B1C1面积.
【详解】
(1)∵
∴△ABC关于原点O对称的△A1B1C1位置如图:
(2)
【点睛】
此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.
3、(1)图见解析,(-1,-3),(-2,0);(2)9
【分析】
(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
【详解】
解:(1)如图,△A1B1C1即为所作,
点A关于x轴对称的点坐标为 (-1,-3);
点B关于y轴对称的点坐标为:(-2,0);
故答案为:(-1,-3),(-2,0);
(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
故答案为:9.
【点睛】
本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
4、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
6、(1)5;(2)见解析;(3)见解析
【分析】
(1)利用“补全矩形法”求解△ABC的面积;
(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
【详解】
解:(1)如图所示:
S△ABC=3×4-×2×2-×2×3-×4×1=5.
(2)如图所示:
(3)如图所示:
【点睛】
本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
7、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
【分析】
(1)根据 A,B 的位置写出坐标即可;
(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
【详解】
(1)由题意 A(-1,2),B(-3,1).
(2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A1(1,2),B1(3,1),C1(0,-1),
在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
如图△A1B1C1即为所求.
(3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A2、B2、C2的横坐标分别为1,3,0,
纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
∴A2(1,-4)、B2(3,-3)、C2(0,-1),
在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
如图△A2B2C2即为所求.
【点睛】
本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
8、(1)图见解析;A1(3,3);(2)见解析
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);
(2)如图所示:△A2B2C2,即为所求.
【点睛】
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
9、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
【分析】
(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
(2)根据△DEF的位置,即可得出D,E两点的坐标;
(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
【详解】
解:(1)如图所示,△DEF即为所求;
(2)由图可得,D(﹣1,﹣4),E(﹣4,1);
故答案为:(﹣1,﹣4),(﹣4,1);
(3),
∴面积为9.5.
【点睛】
题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
10、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)
【分析】
(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;
(2)根据三角形的面积公式,进而可得出P点坐标.
【详解】
解:(1)如图所示:
A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);
(2)△ABC的面积=,
∵BB'=2,
∴P的坐标为(0,7)或(0,﹣3).
【点睛】
本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共28页。试卷主要包含了在平面直角坐标系中,点A,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点在,根据下列表述,能确定位置的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共31页。试卷主要包含了已知A,点A关于y轴的对称点A1坐标是,已知点在一等内容,欢迎下载使用。
这是一份数学第十五章 平面直角坐标系综合与测试课时练习,共29页。试卷主要包含了若点在第三象限,则点在.,在平面直角坐标系中,点,已知点A,点P关于原点O的对称点的坐标是,如果点P等内容,欢迎下载使用。