高考数学(理数)一轮复习刷题小卷练习36《概率、随机变量及分布》 (学生版)
展开刷题增分练 36 概率、随机变量及分布
刷题增分练 小题基础练提分快
一、选择题
1.从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
2.某工厂生产了一批颜色和外观都一样的跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品.现从这8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是( )
A. B. C. D.
3.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4
C.0.6 D.0.7
4.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为( )
A. B. C. D.
5.某种电路开关闭合后会随机出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率为,两次闭合后都出现红灯闪烁的概率为,则开关在第一次闭合后出现红灯闪烁的条件下第二次闭合后出现红灯闪烁的概率为( )
A. B. C. D.
6.现有2个正方体,3个三棱柱,4个球和1个圆台,从中任取一个几何体,则该几何体是旋转体的概率为( )
A. B. C. D.
7.据统计,某城市的火车站春运期间日接送旅客人数X(单位:万)服从正态分布X~N(6,0.82),则日接送人数在6万到6.8万之间的概率为(P(|X-μ|<σ)=0.682 6,P(|X-μ|<2σ)=0.954 4,P(|X-μ|<3σ)=0.997 4)( )
A.0.682 6 B.0.954 4
C.0.997 4 D.0.341 3
8.在△ABC中,AB=5,AC=12,BC=13,一只小蚂蚁从△ABC的内切圆的圆心处开始随机爬行,当蚂蚁(在三角形内部)与△ABC各边距离不小于1时,其行动是安全的,则这只小蚂蚁在△ABC内任意爬行时,其行动是安全的概率为( )
A. B. C. D.
二、非选择题
9.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则目标受损但未完全击毁的概率为________.
10.如图,在等腰直角△ABC中,过直角顶点C作射线CM交AB于M,则使得AM小于AC的概率为________.
11.已知随机变量ξ~N(1,σ2),若P(ξ>3)=0.2,则P(ξ≥-1)=________.
12.据某地区气象台统计,未来一周该地区下雨的概率是,刮风的概率是,既刮风又下雨的概率为,设A为下雨,B为刮风,那么P(B|A)等于________.
刷题课时增分练 综合提能力 课时练 赢高分
一、选择题
1.抛掷一枚均匀的骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )
A.第二次得到6点 B.第二次的点数不超过3
C.第二次的点数是奇数 D.两次得到的点数和是12
2.某国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则三个项目都有人参加的概率为( )
A. B. C. D.
3.某射手每次射击击中目标的概率是,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2种未击中目标的概率为( )
A. B. C. D.
4.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( )
A.0.7 B.0.6
C.0.4 D.0.3
5.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技术之高超,若铜钱直径2 cm,中间有边长为1 cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是( )
A. B. C. D.
6.设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.022 8,那么向正方形OABC中随机投掷20 000个点,则落入阴影部分的点的个数的估计值为( )
附:[随机变量ξ服从正态分布N(1,σ2),则P(μ-σ<ξ<μ+σ)=0.682 6,P(μ-2σ<ξ<μ+2σ)=0.954 4].
A.12 076 B.13 174
C.14 056 D.7 539
7.袋中有大小完全相同的2个红球和3个黑球,不放回地先后摸出两球,设“第一次摸得红球”为事件A,“摸得的两球同色”为事件B,则P(B|A)为( )
A. B. C. D.
8.小明在花店定了一束鲜花,花店承诺将在第二天早上7:30~8:30之间将鲜花送到小明家.若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前收到鲜花的概率是( )
A. B. C. D.
二、非选择题
9.从1,2,3,4,5这五个数中随机抽取两个不同的数,则这两个数的和为偶数的概率是________.
10.已知随机变量X~B(2,P),Y~N(2,σ2),若P(X≥1)=0.64,P(0<Y<2)=p,则P(Y>4)=________.
11.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等将1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.9(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.9(学生版),共8页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版),共8页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版),共8页。