高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.9(学生版)
展开A级
一、选择题
1.已知ξ的分布列为
则在下列式中:①E(ξ)=-eq \f(1,3);②D(ξ)=eq \f(23,27);③P(ξ=0)=eq \f(1,3).正确的个数是( )
A.0 B.1 C.2 D.3
2.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
3.离散型随机变量X的分布列为
则X的数学期望E(X)=( )
A.2 B.2或eq \f(1,2) C.eq \f(1,2) D.1
4.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为( )
A.eq \f(1,2) B.eq \f(2,3) C.eq \f(3,4) D.eq \f(4,5)
5.已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm范围内的校服大约要定制( )
A.683套 B.954套 C.972套 D.997套
6.在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N(98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )
A.1500 B.1700 C.4500 D.8000
7.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,(a,b,c∈(0,1)),已知他投篮得分的数学期望是2,则eq \f(2,a)+eq \f(1,3b)的最小值为( )
A.eq \f(32,3) B.eq \f(28,3) C.eq \f(14,3) D.eq \f(16,3)
8.若X是离散型随机变量,P(X=x1)=eq \f(2,3),P(X=x2)=eq \f(1,3),且x1
9.已知随机变量x服从正态分布N(μ,σ2),且P(μ-2σ
10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(7,12))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2))) C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,12),1)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))
二、填空题
11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为eq \f(2,3),得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=eq \f(1,12),则随机变量X的数学期望E(X)=______.
12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的eq \f(1,3),则此次考试成绩不低于120分的学生约有________人.
13.2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N(8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.
14.赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E(ξ)-E(η)=________元.
B级
三、解答题
15.某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
(1)求频率分布表中x、y的值,并补全频率分布直方图;
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.
16.新生儿Apgar评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.
(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;
(2)用这16名新生儿的Apgar评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.
17.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的数学期望和方差.
18.某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N(120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.
(1)试估算该校高三年级数学的平均成绩;
(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的期望.
附:若X~N(μ,σ2),则P(μ-3σ
-1
0
1
P
eq \f(1,2)
eq \f(1,3)
eq \f(1,6)
X
0
1
P
eq \f(a,2)
eq \f(a2,2)
分组(岁)
频数
[25,30)
x
[30,35)
y
[35,40)
35
[40,45)
30
[45,50]
10
合计
100
分数段
[0,7)
[7,8)
[8,9)
[9,10]
新生儿数
1
3
8
4
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版),共8页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.6(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.6(学生版),共4页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版),共8页。