终身会员
搜索
    上传资料 赚现金

    新教材人教A版数学必修第二册 章末素养提升8 PPT课件

    立即下载
    加入资料篮
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第1页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第2页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第3页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第4页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第5页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第6页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第7页
    新教材人教A版数学必修第二册 章末素养提升8 PPT课件第8页
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材人教A版数学必修第二册 章末素养提升8 PPT课件

    展开

    这是一份新教材人教A版数学必修第二册 章末素养提升8 PPT课件,共60页。


    第八章 立体几何初步章末素养提升| 体系构建 || 核心归纳 |1.柱体、锥体、台体和球体的侧面积和体积公式2.空间中线线关系空间中两条直线的位置关系有且只有相交、平行、异面三种情况.两直线垂直有“相交垂直”与“异面垂直”两种情况.(1)证明线线平行的方法①线线平行的定义;②基本事实4:平行于同一条直线的两条直线互相平行;③线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b;④线面垂直的性质定理:a⊥α,b⊥α⇒a∥b;⑤面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(2)证明线线垂直的方法①线线垂直的定义:两条直线所成的角是直角(在研究异面直线所成的角时,要通过平移把异面直线转化为相交直线);②线面垂直的性质:a⊥α,b⊂α⇒a⊥b;③线面垂直的性质:a⊥α,b∥α⇒a⊥b.3.空间中线面关系直线与平面之间的位置关系有且只有线在面内、线面相交、平行三种.(1)证明直线与平面平行的方法①线面平行的定义;②判定定理:a⊄α,b⊂α,a∥b⇒a∥α;③平面与平面平行的性质:α∥β,a⊂α⇒a∥β.4.空间中面面关系两个平面之间的位置关系有且只有平行、相交两种.(1)证明面面平行的方法①面面平行的定义;②面面平行的判定定理:a∥β,b∥β,a⊂α,b⊂α,a∩b=A⇒α∥β;③线面垂直的性质定理:a⊥α,a⊥β⇒α∥β;④基本事实4的推广:α∥γ,β∥γ⇒α∥β.(2)证明面面垂直的方法①面面垂直的定义:两个平面相交所成的二面角是直二面角;②面面垂直的判定定理:a⊥β,a⊂α⇒α⊥β.| 思想方法 |化归与转化思想【思想方法解读】本章中,转化思想体现得淋漓尽致,比如求体积、距离有时要用到顶点的转化,球的切接问题要将空间几何图形转化为平面几何图形,位置关系的证明、空间角的求解转化到三角形中求解等等.【答案】C等体积转换法(1)用等体积法求空间几何体的体积:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.(2)用等体积法求点到面的距离:通常在三棱锥中,转换底面与顶点,利用等体积求距离.空间与平面转换与球有关的组合体问题,一种是内切,一种是外接.解决与球有关的组合体问题,不仅用到高维、也要用到低维.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”“接点”作出截面图,把空间问题化归为平面问题.(1)求证:AE⊥平面CDE;(2)求证:FG∥平面BCD;(3)在线段AE上找一点R,使得平面BDR⊥平面DCB,并说明理由.解:(1)证明:由已知得DE⊥AE,AE⊥EC.因为DE∩EC=E,所以AE⊥平面CDE.(2)证明:取AB的中点H,连接GH,FH,所以GH∥BD,FH∥BC.因为GH⊄平面BCD,BD⊂平面BCD,所以GH∥平面BCD.同理FH∥平面BCD,又GH∩FH=H,所以平面FHG∥平面BCD.因为GF⊂平面FHG,所以GF∥平面BCD.由(1)知AE⊥平面CDE,AE∥BC,所以BC⊥平面CDE.因为EM⊂平面CDE,所以EM⊥BC.因为BC∩CD=C,所以EM⊥平面BCD.因为EM∥RS,所以RS⊥平面BCD.因为RS⊂平面BDR,所以平面BDR⊥平面DCB.平行与垂直的转换平行、垂直关系的证明的核心是转化,空间向平面的转化,即面面⇔线面⇔线线.相互转化关系如下:3.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是平行四边形,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.空间角向平面角的转换(1)求异面直线所成的角,一般解法是通过平移转化为平面角,将两条异面的直线平移到相交状态,作出等价的平面角,再解三角形即可.(2)求线面角,找出斜线在平面上的射影,关键是作垂线,找垂足,把线面角转化到一个三角形中求解.(3)求二面角,利用几何体的特征作出所求二面角的平面角,再把该平面角转化到某三角形或其他平面图形中求解.4.(2019年南阳检测)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=∠ABC=90°,且AB=BC=2AD=2,侧面PAB⊥底面ABCD,△PAB是等边三角形.(1)求证:BD⊥PC;(2)求二面角B-PC-D的大小.解:(1)证明:如图,取AB的中点O,连接PO,CO.因为△PAB是等边三角形,所以PO⊥AB.又侧面PAB⊥底面ABCD,所以PO⊥底面ABCD.又BD⊂平面ABCD,所以PO⊥BD.又AB=BC=2AD=2,∠ABC=∠DAB=90°,所以△DAB≌△OBC.所以∠BCO=∠ABD,所以BD⊥OC.又OC,PO⊂平面POC,OC∩PO=O,所以BD⊥平面POC.又PC⊂平面POC,所以BD⊥PC.(2)如图,取PC的中点E,连接BE,DE.因为PB=BC,所以BE⊥PC.又BD⊥PC,BE∩BD=B,所以PC⊥平面BDE.所以PC⊥DE,所以∠BED是二面角B-PC-D的平面角(或其补角).因为BC⊥AB,平面PAB∩平面ABCD=AB,平面PAB⊥平面ABCD,所以BC⊥平面PAB.又AD∥BC,所以AD⊥平面PAB.所以BC⊥PB,AD⊥PA.| 链接高考 |空间几何体的表面积与体积【答案】B【点评】本题考查圆柱的结构特征及圆柱表面积的求法,难度较小.【答案】D【解析】如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG.又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC.【点评】若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【答案】10【点评】若所给定的几何体是柱体、锥体或台体等规则几何体,可直接利用公式求解.其中,求三棱锥的体积有时会用到等体积转化法.点、线、面的位置关系 (2019年新课标Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 (  )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【点评】判断空间两直线的位置关系一般可借助几何模型直观感知并准确判断.异面直线的判定方法有两种,一是定理法,即平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线;二是反证法,即先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面. (2019年北京)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:______________.【答案】若l⊥m,l⊥α,则m∥α(若m∥α,l⊥α,则l⊥m)【解析】从三个论断中选两个作为条件,余下的一个论断作为结论,共有三种可能.其中①③⇒②,②③⇒①是正确的命题,①②⇒③是错误的命题,故可填“若l⊥m,l⊥α,则m∥α”或“若m∥α,l⊥α,则l⊥m.”【点评】本题是结论开放的填空题,解题时要有合理的分析和判断,要求推理的每一步都正确无误.平行、垂直的证明及空间角的计算 (2019年新课标Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)求证:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【点评】高考中平行,垂直关系的判定与性质是立体几何的核心内容,距离、面积与体积的计算是重点内容,在平时的学习中,要重视识图训练,能正确确定关键点或线的位置,将局部空间问题转化为平面模型.(1)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)解:如图,取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,所以MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.【点评】求解空间线线角、线面角、二面角一定注意“作角、证明、计算”是完整统一过程,缺一不可.
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map