|学案下载
搜索
    上传资料 赚现金
    8.3.1 棱柱、棱锥、棱台的表面积和体积 高一数学新教材配套学案(人教A版2019必修第二册)
    立即下载
    加入资料篮
    8.3.1 棱柱、棱锥、棱台的表面积和体积  高一数学新教材配套学案(人教A版2019必修第二册)01
    8.3.1 棱柱、棱锥、棱台的表面积和体积  高一数学新教材配套学案(人教A版2019必修第二册)02
    8.3.1 棱柱、棱锥、棱台的表面积和体积  高一数学新教材配套学案(人教A版2019必修第二册)03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学8.3 简单几何体的表面积与体积导学案

    展开
    这是一份数学8.3 简单几何体的表面积与体积导学案

    8.3.1 棱柱、棱锥、棱台的表面积和体积【学习目标】【自主学习】一.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体__ __的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的__ _的面积的和.1.棱柱的表面积棱柱的表面积:S表= .其中底面周长为C,高为h的直棱柱的侧面积:S侧= ;长、宽、高分别为a,b,c的长方体的表面积:S表= ;棱长为a的正方体的表面积:S表= .2.棱锥的表面积棱锥的表面积:S表=S侧+S底;底面周长为C,斜高(侧面三角形底边上的高)为h′的正棱锥的侧面积:S侧= .3.棱台的表面积棱台的表面积:S表= .多面体的表面积就是围成多面体各个面的面积之和.二.棱柱、棱锥、棱台的体积1.棱柱的体积(1)棱柱的高是指 之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)棱柱的底面积S,高为h,其体积V= .2.棱锥的体积(1)棱锥的高是指从顶点向底面作垂线, 与 (垂线与底面的交点)之间的距离.(2)棱锥的底面积为S,高为h,其体积V= .3.棱台的体积(1)棱台的高是指 之间的距离.(2)棱台的上、下底面面积分别是S′、S,高为h,其体积V= .【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)几何体的表面积就是其侧面面积与底面面积的和. (  )(2)几何体的侧面积是指各个侧面的面积之和. (  )(3)等底面面积且等高的两个同类几何体的体积相同. (  )(4)在三棱锥P­ABC中,VP­ABC=VA­PBC=VB­PAC=VC­PAB. (  )3.长方体同一顶点上的三条棱长分别为1,2,3,则长方体的体积与表面积分别为(  )A.6,22 B.3,22 C.6,11 D.3,11【经典例题】题型一 棱柱、棱锥、棱台的侧面积和表面积点拨:棱柱、棱锥、棱台的表面积求法(1)多面体的表面积是各个面的面积之和.(2)棱柱、棱锥、棱台的表面积等于它们的侧面积与各自底面积的和.例1 侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是(  )A.eq \f(3+\r(3),4)a2   B.eq \f(3,4)a2C.eq \f(3+\r(3),2)a2 D.eq \f(6+\r(3),4)a2【跟踪训练】1 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积、表面积.题型二 棱柱、棱锥、棱台的体积例2 已知高为3的三棱柱ABC-A1B1C1的底面是边长为1的正三角形,如图所示,则三棱锥B1-ABC的体积为( D )A.eq \f(1,4)   B.eq \f(1,2)  C.eq \f(\r(3),6)   D.eq \f(\r(3),4)【跟踪训练】2 棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于 .题型三 求体积的等积法与分割法点拨:求几何体体积的常用方法例3 如图,在棱长为a的正方体ABCD-A1B1C1D1中,求A到平面A1BD的距离d. 【跟踪训练】3 如图,在多面体ABCDEF中,已知四边形ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.【当堂达标】1.已知高为3的棱柱ABC­A1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1­ABC的体积为(  )A.eq \f(1,4)    B.eq \f(1,2) C.eq \f(\r(3),6)    D.eq \f(\r(3),4)2.已知正四棱锥底面边长为6,侧棱长为5,则此棱锥的侧面积为 (  )A.6 B.12 C.24 D.483.把一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积为________.4.如图所示,三棱锥的顶点为P,PA,PB,PC为三条侧棱,且PA,PB,PC两两互相垂直,又PA=2,PB=3,PC=4,则三棱锥P­ABC的体积V=________.5.已知棱长均为5,底面为正方形的四棱锥S-ABCD如图所示,求它的侧面积、表面积.6.如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1-D1EF的体积. 【课堂小结】1.棱柱、棱锥、棱台的表面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段的长,是掌握它们的表面积有关问题的关键.2.计算棱柱、棱锥、棱台的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面,将空间问题转化为平面问题.3.在几何体的体积计算中,注意体会“分割思想”、“补体思想”及“等价转化思想”.【参考答案】【自主学习】各个面 各个面 S侧+2S底 Ch 2(ab+ac+bc) 6a2 eq \f(1,2)Ch′ S侧+S上底+S下底 两底面 Sh 顶点 垂足 eq \f(1,3)Sh 两个底面 eq \f(1,3)h(S′+eq \r(S′S)+S) 【小试牛刀】1.(1)√ (2)√ (3)√ (4)√2.A解析:V=1×2×3=6,S=2(1×2)+2(1×3)+2(2×3)=22.【经典例题】例1 A解析:∵侧面都是等腰直角三角形,故侧棱长等于eq \f(\r(2),2)a,∴S表=eq \f(\r(3),4)a2+3×eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)a))eq \s\up12(2)=eq \f(3+\r(3),4)a2.【跟踪训练】1 解 如图,设底面对角线AC=a,BD=b,交点为O,体对角线A1C=15,B1D=9,∴a2+52=152,b2+52=92,∴a2=200,b2=56.∵该直四棱柱的底面是菱形,∴AB2=eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(AC,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(BD,2)))2=eq \f(a2+b2,4)=eq \f(200+56,4)=64,∴AB=8.∴直四棱柱的侧面积S侧=4×8×5=160.∴直四棱柱的底面积S底=eq \f(1,2)AC·BD=20eq \r(7).∴直四棱柱的表面积S表=160+2×20eq \r(7)=160+40eq \r(7).例2 D 解析: 设三棱锥B1-ABC的高为h,则V三棱锥B1-ABC=eq \f(1,3)S△ABCh=eq \f(1,3)×eq \f(\r(3),4)×3=eq \f(\r(3),4).【跟踪训练】2 6+2eq \r(2) 解析:体积V=eq \f(1,3)(2+eq \r(2×4)+4)×3=6+2eq \r(2).例3 解析:在三棱锥A1-ABD中,AB=AD=AA1=a,A1B=BD=A1D=eq \r(2)a,∵VA1-ABD=VA-A1BD,∴eq \f(1,3)×eq \f(1,2)a2×a=eq \f(1,3)×eq \f(1,2)×eq \r(2)a×eq \f(\r(3),2)×eq \r(2)a×d.解得d=eq \f(\r(3),3)a.∴A到平面A1BD的距离为eq \f(\r(3),3)a.【跟踪训练】3 解 如图,连接EB,EC,AC.V四棱锥E-ABCD=eq \f(1,3)×42×3=16.∵AB=2EF,EF∥AB,∴S△EAB=2S△BEF.∴V三棱锥F-EBC=V三棱锥C-EFB=eq \f(1,2)V三棱锥C-ABE=eq \f(1,2)V三棱锥E-ABC=eq \f(1,2)×eq \f(1,2)V四棱锥E-ABCD=4.∴多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.【当堂达标】1.D2.D 解析:正四棱锥的斜高h′= 4,S侧=4× ×6×4=48.3.18a2 解析:原正方体的棱长为a,切成的27个小正方体的棱长为eq \f(1,3)a,每个小正方体的表面积S1=eq \f(1,9)a2×6=eq \f(2,3)a2,所以27个小正方体的表面积是eq \f(2,3)a2×27=18a2.4. 4 解析:三棱锥的体积V=eq \f(1,3)Sh,其中S为底面积,h为高,而三棱锥的任意一个面都可以作为底面,所以此题可把B看作顶点,△PAC作为底面求解.故V=eq \f(1,3)S△PAC·PB=eq \f(1,3)×eq \f(1,2)×2×4×3=4.5.解析 ∵四棱锥S-ABCD的各棱长均为5,∴各侧面都是全等的正三角形.设E为AB的中点,连接SE,则SE⊥AB,∴S侧=4S△SAB=4×eq \f(1,2)AB×SE=2×5×eq \r(52-\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,2)))2)=25eq \r(3),S表=S侧+S底=25eq \r(3)+25=25(eq \r(3)+1).6.解析:由V三棱锥A1-D1EF=V三棱锥F-A1D1E,∵S△A1D1E=eq \f(1,2)EA1·A1D1=eq \f(1,4)a2,又三棱锥F-A1D1E的高为CD=a,∴V三棱锥F-A1D1E=eq \f(1,3)×a×eq \f(1,4)a2=eq \f(1,12)a3,∴V三棱锥A1-D1EF=eq \f(1,12)a3. 素 养 目 标学 科 素 养1.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.2.会求与棱柱、棱锥、棱台有关的组合体的表面积与体积.1.数学运算;2.逻辑推理公式法直接代入公式求解等积法例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可补体法将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等分割法将几何体分割成易求解的几部分,分别求体积
    相关学案

    高中人教A版 (2019)第八章 立体几何初步8.3 简单几何体的表面积与体积学案: 这是一份高中人教A版 (2019)第八章 立体几何初步8.3 简单几何体的表面积与体积学案,共9页。

    高中数学8.3 简单几何体的表面积与体积导学案: 这是一份高中数学8.3 简单几何体的表面积与体积导学案,共6页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。

    数学必修 第二册8.3 简单几何体的表面积与体积学案设计: 这是一份数学必修 第二册8.3 简单几何体的表面积与体积学案设计,共6页。学案主要包含了探索新知等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        8.3.1 棱柱、棱锥、棱台的表面积和体积 高一数学新教材配套学案(人教A版2019必修第二册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map