终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新课标人教A版数学必修2:点、直线、平面之间的位置关系教案

    立即下载
    加入资料篮
    新课标人教A版数学必修2:点、直线、平面之间的位置关系教案第1页
    新课标人教A版数学必修2:点、直线、平面之间的位置关系教案第2页
    新课标人教A版数学必修2:点、直线、平面之间的位置关系教案第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修22.1 空间点、直线、平面之间的位置关系教学设计

    展开

    这是一份高中数学人教版新课标A必修22.1 空间点、直线、平面之间的位置关系教学设计,共13页。教案主要包含了知识结构,学习目标,课时安排,教学建议等内容,欢迎下载使用。
    第二点、直线、平面之间的位置关系(必修2)   一、知识结构 1          2空间中平行、垂直间的转化关系        二、学习目标1直观认识和理解、体会空间中点、直线、平面之间的位置关系,抽象出空间直线、平面之间的位置关系,用数学语言表述有关平行、垂直的性质与判定,了解可以作为推理依据的公理和定理。公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。公理2 过不在同一直线上的三点,有且只有一个平面。公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。公理4 平行于同一条直线的两条直线平行。等角定理 。。。。2以空间的上述公理和定理为出发点,通过直观感知,操作确认,归纳出一些判定定理与性质定理。判定定理在选修2-1证明,性质定理要求证明。3.运用获得的结论证明一些空间位置关系的简单命题。  三、课时安排全章约需10+2课时2.1 空间点、直线、平面之间的位置关系  ------------------- 3课时2.2 直线、平面平行的判定及其性质      --------------------3+1课时2.3 直线、平面垂直的判定及其性质      --------------------3+1课时小结                        ----------------------------------1课时 四、教学建议2.1空间点、直线、平面之间的位置关系3课时)第一课时 平面教学内容 平面的概念;平面的画法和表示;平面的基本性质学习目标 1.了解平面的概念,理解平面的无限延展性。2.会正确地用图形和符号表示点、直线、平面及其它们之间的位置关系,初步掌握文字语言、图形语言、符号语言间的相互转化。3.了解作为以后推理依据的三个公理。教学重点 文字语言、图形语言、符号语言间的相互转化,三个公理的作用。 要点分析1三种语言间的联系图形语言——考察对象第一次抽象的产物,形象、直观的语言。文字语言——对图像的描述、解释与讨论。符号语言——对文字语言的简化和再次抽象。在对空间图形的认识中,注意有序的建立三种数学语言间的联系,合理使用三种数学语言描述图形的性质,加深对图形性质的理解。课本按照图形语言——文字语言——符号语言——三种语言综合描述的顺序安排学习内容。注意符号语言只是借用集合符号,读法仍用几何语言2.两个重要模型四面体、长方体作为图形语言的载体作用——典型性、简明性、直观性、概括性、趣味性。      建议要求学生能熟练画出四面体、长方体,利用这两个模型理解所学概念、定理,发展几何直观能力,提高空间想象力。 3平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内。作用:用直线的直刻划平面的平,判断直线在平面内的依据。 公理2 过不在同一直线上的三点,有且只有一个平面。作用:确定平面的依据。课本并没有给出常用的三个推论,只是在练习题中以判断题的形式涉及,建议学生将其作为重要结论使用,但不涉及推论字眼。 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。作用:判定两个平面相交的依据,为画图提供理论——两个平面相交有一条交线可用于判定点在直线上。       建议:适当进行不同角度的两个相交平面直观图画法的练习,提高学习兴趣,提高空间想象能力,为在空间图形中进行命题论证奠定基础——画图关。 第二课时 空间中直线与直线之间的位置关系教学内容 空间两条直线之间的位置关系,等角定理。学习目标 了解空间中直线与直线三种位置关系;理解异面直线的定义;了解公理4和等角定理;理解异面直线所成角及空间两条直线互相垂直的定义。教学重点 异面直线的有关概念,等角定理。 要点分析1.空间两条直线的位置关系观察模型,抽象概括出异面直线的概念同在任何一个平面内空间两条直线的位置关系:           相交直线:在同一平面内——有且只有一个公共点共面直线           平行直线:在同一平面内                                                   没有公共点异面直线——不同在任何一个平面内       建议:在具体模型中巩固异面直线的定义,如上图,三棱锥的棱所在直线中,异面直线有多少对?。。。。。。2平行线的传递性课本P452  证明以空间四边形各边中点为顶点的四边形是平行四边形。2的训练价值: 1)旋转化平面的方法:空间四边形转化为平面四边形;平面四边形绕对角线BD旋转得到空间四边形。2)增加什么条件,四边形EFGH成为菱形、矩形、正方形?3.等角定理通过对长方体模型的观察得到等角定理,鉴于长方体角度的特殊性,建议增加一点观察的难度,如下图2 等角定理并不要求证明,只需观察确认,目的是为定义异面直线所成角提供理论支持。4.异面直线所成的角利用平行投影感知异面直线所成的角:建议P45探究作业难度较大,课上不作处理。 第三课时 直线与平面、平面与平面之间的位置关系教学内容 直线与平面的位置关系;平面与平面的位置关系。学习目标 1了解直线与平面的位置关系,理解直线在平面外的概念;了解空间两个平面的位置关系。    2.通过对实物或模型的观察,直线、平面间位置关系的确认,再到熟知的长方体模型中位置关系的识别,使学生明确各种位置关系的本质特征,树立空间观念,提高画图和识图能力。教学重点  直线、平面间位置关系的确认。要点分析1直线与平面的位置关系直线在平面内—— —— —— —— 无数个公共点                                                     有公共点直线与平面相交——有且只有一个公共点直线在平面外              直线与平面平行—— —— —— —— —— 无公共点 建议:三种位置关系的图形表示,要求学生课上练习画法,并用符号语言表示,帮助学生纠正易犯的错误,如下图      2.两个平面的位置关系两个平面平行——没有公共点两个平面相交——有一条公共直线建议:利用长方体模型,识别直线、平面间的各种位置关系。 3.问题探究1已知平面,直线,则直线ab具有怎样的位置关系?画出图形表示你的结论2已知平面,直线,则直线ab具有怎样的位置关系?画出图形表示你的结论。 3P50 练习:如果三个平面两两相交,那么它们有多少条交线?画出图形表示你的结论。  2.2 直线、平面平行的判定及其性质3+1课时第四课时 直线与平面平行的判定教学内容 直线与平面平行的判定定理。学习目标 1理解直线与平面平行的判定定理,会利用定理在简单几何体中判定直线与平面是否平行。2.通过定理的应用,培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 操作确认直线与平面平行的判定方法,也是教学的难点。要点分析1直线与平面平行的判定定理:          利用直线与直线的平行判断直线与平面的平行,即将线面平行问题转化为线线平行问题——转化思想方法的应用。   2判定定理的应用1)借助于长方体模型,熟悉巩固定理的条件,严格要求论证的叙述:三个条件缺一不可2在(1)的基础上练习书面表述定理的应用。参看课本P55 1 第五课时 平面与平面平行的判定教学内容 平面与平面平行的判定定理学习目标 1理解平面与平面平行的判定定理,会利用定理在简单几何体中判定平面与平面是否平行。2.通过定理的应用,培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 平面与平面平行判定方法的确认,也是教学的难点。要点分析1平面与平面平行的判定定理注意让学生体验转化思想应用,转化关系为   2定理的应用建议:增加综合练习,提升学生的数学能力。1 已知正方体ABCD-A1B1C1D1EFG分别A1B1A1D1A1A的中点,求证:平面EFG//平面BC1D        2 已知三棱锥P-ABCD中,EFG分别是边ABPCPB中点,求证:平面PAD// 平面EFG 3类比思维训练类比平面几何的一些结论,可以得到空间图形的一些重要性质,从素质教育的角度出发,建议进行必要的类比思维训练。 平面几何中有如下结论:如图,线段ABCD相交于点O且互相平分,则直线 AC// BD        类比上述结论,在空间,你能得到什么结论?   第六课时 直线与平面平行的性质教学内容 直线与平面平行的性质定理。学习目标 1掌握直线与平面平行的性质定理,较为灵活的运用所学定理在几何体中证明简单的命题。2.培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 操作确认——逻辑证明。要点分析1.直线与平面平行的性质定理注意空间中平行关系的转化:   2.定理的应用1 如图,已知平面直线,求证:     3类比思维训练 2 平面几何中有如下结论:平行线间的平行线段相等。      类比上述结论,由直线 //平面,你能得到什么结论?能把你的结论再推广吗?  第七课时 平面与平面平行的性质教学内容 平面与平面平行的性质定理。学习目标 1.掌握平面与平面平行的性质定理,能较为灵活的运用所学定理在几何体中证明简单的命题。2.培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 性质定理的证明及其应用要点分析1.平面与平面平行的性质定理 空间中平行关系的转化——知识结构   2.类比思维训练 平面几何中有如下结论:如图,平行线截直线所得线段成比例。类比上述结论,在空间,你能得到什么结论?试给出证明。       2.3 直线、平面垂直的判定及其性质3+1课时) 第八课时 直线与平面垂直的判定教学内容 直线与平面垂直的定义、判定;直线和平面所成的角学习目标 1.理解直线与平面垂直的定义;掌握直线与平面垂直的判定定理,会用定义和定理判定几何图形中直线与平面的垂直关系;理解直线与平面所成角的定义,会在简单空间图形中求直线和平面所成的角。2.通过直观感知、操作确认、定理应用等教学活动,培养学生空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 直线与平面垂直的判定定理及其应用。要点分析1.直线与平面垂直的判定通过直观感知、操作确认,得到直线与平面垂直的判定方法     将三角形纸片沿AD折起,折线BDCD确定一个平面,折痕AD与平面BCD垂直吗? 如何翻折才能使AD垂直平面BCD垂直?       直线与平面垂直的判定定理:定理中三个条件缺一不可。建议:(1)通过反例引起学生对条件 的必要性认识。2利用长方体图形对定理进行巩固练习,提高学生论证的严谨性。 2.在两个重要模型强化判定定理1)正方体ABCD- A1B1C1D1中,对角线A1C垂直平面AB1D1BC1D2)正三棱锥P-ABC中,相对的棱互相垂直。        2.知识结构       3直线与平面所成的角建议:在两个重要模型中进行强化练习。 如图,三棱锥P-ABC中,平面。求:1PAPBPC与平面PBC所成的角; 2ACABAP与平面PBC所成的角。       第九课时 平面与平面垂直的判定教学内容 二面角;平面与平面垂直的定义、判定。学习目标 1理解二面角的有关概念;掌握平面与平面垂直的判定定理。2.培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 平面与平面垂直的判定定理的确认要点分析1二面角1)二面角画法练习——不同方向的二面角的画法2)二面角求法练习课本没有求二面角大小的题例,建议在具体简单图形中巩固有关概念。           2.知识结构       3.问题探究 1如图,三棱锥P-ABC中,平面,问:图中有几对面互相垂直? 并给出证明。2)如图,四棱锥P-ABCD中,是矩形,问:图中有几对面互相垂直? 并给出证明。         第十课时 直线与平面垂直的性质教学内容 直线与平面垂直的性质。学习目标 1掌握直线与平面垂直的性质定理。2.培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 直线与平面垂直的性质定理的应用。难点是定理的证明。要点分析1.知识结构       2.性质定理的证明定理的证明引用了反证法,这是教学的难点。 3定理的应用通过定理的应用,体验转化思想在几何中的具体运用,提高逻辑论证能力。 如图,四棱锥P-ABCD中,是矩形,MPC中点,证明平面        4.问题探究下述两个位置关系之间能进行相互转化吗?      第十一课时 平面与平面垂直的性质教学内容 平面与平面垂直的性质。学习目标 1平面与平面垂直的性质定理。2.培养空间想象能力和逻辑论证能力,体验转化思想在几何中的运用。教学重点 平面与平面垂直的性质定理的应用。难点是定理的证明。要点分析1.知识结构       2.定理的证明直观感知——提出猜想——逻辑证明。定理的证明用到同一法,难度较大,是本节课的难点。 3线面位置关系的判定练习建议:增加一定量的选择题、判断题巩固所学定理。 (2007辽宁,理7题)若是两条不同的直线,是三个不同的平面,则下列命题中的真命题是(    A.若,则  B.若,则C.若,则  D.若,则4定理的应用如图,三棱锥P-ABC中,平面。求:1PC与平面PAB所成的角; 2PB与平面PAC所成的角。           第十二课时 小结

    相关教案

    高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系公开课教案:

    这是一份高中数学人教A版 (2019)必修 第二册8.4 空间点、直线、平面之间的位置关系公开课教案,共7页。教案主要包含了已知M等内容,欢迎下载使用。

    2021学年第二章 点、直线、平面之间的位置关系综合与测试教案:

    这是一份2021学年第二章 点、直线、平面之间的位置关系综合与测试教案,共3页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。

    必修23.2 直线的方程教学设计:

    这是一份必修23.2 直线的方程教学设计,共1页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map