所属成套资源:人教版新课标A数学必修2:同步练习
- 人教版高中数学必修二检测:第二章 点、直线、平面之间的位置关系 课后提升作业 十一 2.2.3 Word版含解析 试卷 0 次下载
- 人教版高中数学必修二检测:第二章 点、直线、平面之间的位置关系 课后提升作业 九 2.1.3&2.1.4 Word版含解析 试卷 0 次下载
- 人教版高中数学必修二检测:第二章 点、直线、平面之间的位置关系 课后提升作业 十四 2.3.2 Word版含解析 试卷 0 次下载
- 人教版高中数学必修二检测:第二章 点、直线、平面之间的位置关系 课后提升作业 十六 2.3.4 Word版含解析 试卷 0 次下载
- 人教版高中数学必修二检测:第二章 点、直线、平面之间的位置关系 课后提升作业 十五 2.3.3 Word版含解析 试卷 1 次下载
高中数学2.1 空间点、直线、平面之间的位置关系同步练习题
展开
这是一份高中数学2.1 空间点、直线、平面之间的位置关系同步练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课后提升作业 十直线与平面平行的判定 平面与平面平行的判定(45分钟 70分)一、选择题(每小题5分,共40分)1.(2016·济宁高一检测)已知l∥α,m∥α,l∩m=P且l与m确定的平面为β,则α与β的位置关系是 ( )A.相交 B.平行C.相交或平行 D.不确定【解析】选B.因为l∩m=P,所以过l与m确定一个平面β,又因为l∥α,m∥α,l∩m=P,所以β∥α.2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是 ( )A.b∥α B.b与α相交C.b⊂α D.b∥α或b与α相交【解析】选D.由题意画出图形,当a,b所在平面与平面α平行时,b与平面α平行,当a,b所在平面与平面α相交时,b与平面α相交.3.(2016·福州高一检测)平面α与△ABC的两边AB,AC分别交于点D,E,且AD︰DB=AE︰EC,如图,则BC与α的位置关系是 ( )A.平行 B.相交C.平行或相交 D.异面【解析】选A.因为AD︰DB=AE︰EC,所以DE∥BC,又DE⊂α,BC⊄α,所以BC∥α.4.有以下三种说法,其中正确的是 ( )①若直线a与平面α相交,则α内不存在与a平行的直线;②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行;③直线a,b满足a∥α,a∥b,且b⊂α,则a平行于经过b的任何平面.A.①② B.①③ C.②③ D.①【解析】选D.①正确,若在α内存在一条直线b,使a∥b,则a∥α与“a与平面α相交”矛盾,故①正确;②错误,反例如图(1)所示;③错误,反例如图(2)所示,a,b可能在同一平面内.5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则 ( )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形【解析】选B.如图,由题意得,EF∥BD,且EF=BD.HG∥BD,且HG=BD.所以EF∥HG,且EF≠HG.所以四边形EFGH是梯形.所以EF∥平面BCD,而EH与平面ADC不平行.故选B.6.正方体EFGH-E1F1G1H1中,下列四对截面中,彼此平行的一对截面是 ( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G【解析】选A.在平面E1FG1与平面EGH1中,因E1G1∥EG,FG1∥EH1,且E1G1∩FG1=G1,EG∩EH1=E,故平面E1FG1∥平面EGH1.7.已知m,n是两条直线,α,β是两个平面,有以下说法:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确说法的个数是 ( )A.0 B.1 C.2 D.3【解析】选B.设m∩n=P,则直线m,n确定一个平面,设为γ,由面面平行的判定定理知,α∥γ,β∥γ,因此,α∥β,即①正确;如图,在长方体ABCD-A1B1C1D1中,直线EF平行于平面ADD1A1和平面A1B1C1D1,即满足②的条件,但平面A1B1C1D1与平面ADD1A1不平行,因此②不正确;图中,EF∥平面ADD1A1,BC∥平面A1B1C1D1,EF∥BC,但平面ADD1A1与平面A1B1C1D1不平行,所以③也不正确.8. (2016·青岛高一检测)在正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥平面APC;(2)C1Q∥平面APC;(3)A,P,M三点共线;(4)平面MNQ∥平面APC.正确的序号为 ( )A.(1)(2) B.(1)(4) C.(2)(3) D.(3)(4)【解析】选C.(1)MN∥AC,连接AM,CN,易得AM,CN交于点P,即MN⊂平面PAC,所以MN∥平面APC是错误的;(2)平面APC延展,可知M,N在平面APC上,AN∥C1Q,所以C1Q∥平面APC,是正确的;(3)由BP=BD1,以及相似,可得A,P,M三点共线,是正确的;(4)直线AP延长到M,则M在平面MNQ内,又在平面APC内,所以平面MNQ∥平面APC,是错误的.二、填空题(每小题5分,共10分)9.(2016·济南高一检测)三棱锥S-ABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.【解析】连接AG并延长交BC于点M,连接SM,则AG=2GM,又AE=2ES,所以EG∥SM,又EG⊄平面SBC,所以EG∥平面SBC.答案:平行10.(2016·太原高一检测)下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.(将你认为正确的都填上)【解析】在④中NP平行所在正方体的那个侧面的对角线,从而平行AB,所以AB∥平面MNP;在①中设过点B且垂直于上底面的棱与上底面交点为C,则由NP∥CB,MN∥AC,可知平面MNP∥平面ABC,即AB∥平面MNP.答案:①④【补偿训练】(2016·菏泽高一检测)如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点,则下列命题:①E,C,D1,F四点共面;②CE,D1F,DA三线共点;③EF和BD1所成的角为90°;④A1B∥平面CD1E.其中正确的是________(填序号).【解析】由题意EF∥CD1,故E,C,D1,F四点共面;由EF?CD1,故D1F与CE相交,记交点为P,则P∈平面ADD1A1,P∈平面ABCD,所以点P在平面ADD1A1与平面ABCD的交线AD上,故CE,D1F,DA三线共点;∠A1BD1即为EF与BD1所成角,显然∠A1BD1≠90°;因为A1B∥EF,EF⊂平面CD1E,A1B⊄平面CD1E,所以A1B∥平面CD1E.答案:①②④三、解答题(每小题10分,共20分)11.(2015·福建高考改编)如图,在几何体ABCDE中,四边形ABCD是矩形,G,F分别是BE,DC的中点.求证:GF∥平面ADE.【证明】取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB且GH=AB,又F是CD的中点,所以DF=CD,由四边形ABCD是矩形,得ABCD,所以GHDF,从而四边形HGFD是平行四边形,所以GF∥HD.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.12.(2015·四川高考改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.【解析】(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCHE为平行四边形.所以BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.【能力挑战题】已知直三棱柱ABC-A1B1C1,点N在AC上且CN=3AN,点M,P,Q分别是AA1,A1B1,BC的中点.求证:直线PQ∥平面BMN.【证明】如图,取AB中点G,连接PG,QG分别交BM,BN于点E,F,则E,F分别为BM,BN的中点.而GE∥AM,GE=AM,GF∥AN,GF=AN,且CN=3AN,所以=,==,所以==,所以EF∥PQ,又EF⊂平面BMN,PQ⊄平面BMN,所以PQ∥平面BMN.关闭Word文档返回原板块
相关试卷
这是一份人教版新课标A必修22.1 空间点、直线、平面之间的位置关系课时作业,共10页。
这是一份数学必修22.1 空间点、直线、平面之间的位置关系当堂检测题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版新课标A必修22.1 空间点、直线、平面之间的位置关系习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。