2020-2021学年2.3 等差数列的前n项和导学案
展开
课题:3.3 等差数列的前n项和(1) 第 课时 总序第 个教案 | |
课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日 | |
教学目标: 知识与技能:掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美。 | 批 注
|
教学重点:等差数列n项和公式的理解、推导及应 | |
教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题 | |
教学用具:投影仪 | |
教学方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. | |
教学过程: 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。 教师问:“你是如何算出答案的? 高斯回答说:因为1+100=101; 2+99=101;…50+51=101,所以 101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。 (2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。 Ⅱ.讲授新课 1.等差数列的前项和公式1: 证明: ① ② ①+②: ∵ ∴ 由此得: 从而我们可以验证高斯十岁时计算上述问题的正确性 2. 等差数列的前项和公式2: 用上述公式要求必须具备三个条件: 但 代入公式1即得: 此公式要求必须已知三个条件: (有时比较有用) [范例讲解] 课本P43-44的例1、例2、例3
由例3得与之间的关系: 由的定义可知,当n=1时,=;当n≥2时,=-, 即=. Ⅲ.课堂练习 课本P52练习1、2、3、4 Ⅳ.课时小结 本节课学习了以下内容: 1.等差数列的前项和公式1: 2.等差数列的前项和公式2: | |
教学后记:
|
高中数学人教版新课标A必修52.3 等差数列的前n项和学案: 这是一份高中数学人教版新课标A必修52.3 等差数列的前n项和学案,共2页。
数学必修52.3 等差数列的前n项和学案设计: 这是一份数学必修52.3 等差数列的前n项和学案设计,共1页。学案主要包含了预习问题,实战操作等内容,欢迎下载使用。
高中数学人教版新课标A必修52.3 等差数列的前n项和导学案: 这是一份高中数学人教版新课标A必修52.3 等差数列的前n项和导学案,共2页。学案主要包含了预习问题,实战操作等内容,欢迎下载使用。