![高中数学:2.2.5《导数的几何意义》教案(北师大版选修2-2)01](http://m.enxinlong.com/img-preview/3/3/12492409/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学:2.2.5《导数的几何意义》教案(北师大版选修2-2)
展开第五课时 导数的几何意义(一)
一、教学目标:
1、通过函数的图像直观地理解导数的几何意义;
2、理解曲线在一点的切线的概念;
3、会求简单函数在某点处的切线方程。
二、教学重点:了解导数的几何意义
教学难点:求简单函数在某点出的切线方程
三、教学方法:探析归纳,讲练结合
四、教学过程
(一)、复习:导数的概念及求法。
(二)、探究新课
设函数在[x0,x0+Δx]的平均变化率为,如右图所示,它是过A(x0,)和B(x0+Δx,)两点的直线的斜率。这条直线称为曲线在点A处的一条割线。
如右图所示,设函数的图像是一条光滑的曲线,从图像上可以看出:当Δx取不同的值时,可以得到不同的割线;当Δx趋于0时,点B将沿着曲线趋于点A,割线AB将绕点A转动最后趋于直线l。直线l和曲线在点A处“相切” ,称直线l为曲线在点A处的切线。该切线的斜率就是函数在x0处的导数。
函数在x0处的导数,是曲线在点(x0,)处的切线的斜率。函数在x0处切线的斜率反映了导数的几何意义。
1、导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
③利用点斜式求切线方程.
2、导函数:
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
3、函数在点处的导数、导函数、导数 之间的区别与联系。
(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
(2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
(3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
例1、已知函数, x0=-2。
(1)分别对Δx=2,1,0.5求在区间[x0,x0+Δx]上的平均变化率,并画出过点(x0,)的相应割线;
(2)求函数在x0=-2处的导数,并画出曲线在点(-2,4)处的切线。
解:(1)Δx=2,1,0.5时,区间[x0,x0+Δx]相应为[-2,0],[-2,-1],[-2,-1.5]。在这些区间上的平均变化率分别为
,
,
.
其相应割线如右图所示,分别是过点(-2,4)和点(0,0)的直线l1,过点(-2,4)和点(-1,1)的直线l2,过点(-2,4)和点(-1.5,2.25)的直线l3.
(2)在区间[-2,-2+Δx]上的平均变化率为
.
令Δx趋于0,知函数在x0=-2处的导数为-4。
曲线在点(-2,4)处的切线为l,如右图所示。
例2、求函数在x=1处的切线方程。
解:先求在x=1处的导数:
令Δx趋于0,知函数在x=1处的导数为。
这样,函数在点(1,)=(1,2)处的切线斜率为6.即该切线经过点(1,2),斜率为6.
因此切线方程为 y-2=6(x-1).
即 y=6x-4.
切线如图所示。
(三)、小结:函数在x0处的导数,是曲线在点(x0,)处的切线的斜率。函数在x0处切线的斜率反映了导数的几何意义。
(四)、练习:课本练习:1、2.
(五)、作业:课本习题2-2中A组4、5
五、教后反思:
人教版新课标B选修2-23.1.3复数的几何意义教学设计: 这是一份人教版新课标B选修2-23.1.3复数的几何意义教学设计,共2页。教案主要包含了复习准备,讲授新课,巩固与提高等内容,欢迎下载使用。
高中数学人教版新课标A选修2-21.1变化率与导数教案: 这是一份高中数学人教版新课标A选修2-21.1变化率与导数教案,共4页。教案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。
人教版新课标A选修2-21.1变化率与导数教案: 这是一份人教版新课标A选修2-21.1变化率与导数教案,共4页。