终身会员
搜索
    上传资料 赚现金

    《点到直线的距离》教案6(人教B版必修2)

    立即下载
    加入资料篮
    《点到直线的距离》教案6(人教B版必修2)第1页
    《点到直线的距离》教案6(人教B版必修2)第2页
    《点到直线的距离》教案6(人教B版必修2)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标B必修22.2.4点到直线的距离教学设计

    展开

    这是一份人教版新课标B必修22.2.4点到直线的距离教学设计,共6页。教案主要包含了提出问题,解决问题,公式应用,课堂小结,布置作业等内容,欢迎下载使用。


    点到直线的距离

    教学目标:

    1.让学生理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离.

    2.培养学生观察、思考、分析、归纳等数学能力,数形结合、化归(或转化)、特殊到一般的数学思想方法以及数学应用意识.

    3.让学生了解和感受探索问题的方法,以及用联系的观点看问题.在探索问题的过程中体验成功的喜悦.

    教学重点:点到直线距离公式及其应用.

    教学难点:点到直线距离公式的推导.

    教学方法:启发式讲解法、讨论法.

    教学工具:电脑多媒体.

    教学过程:

    一、提出问题

    多媒体显示实际的例子:

        某电信局计划年底解决本地区最后一个小区的电话通信问题.经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为P(-15),离它最近的只有一条线路通过,其方程为2x+y+10=0.要完成这项任务,至少需要多长的电缆线?

    这个实际问题要解决,要转化成什么样的

    数学问题?学生得出就是求点到直线的距离.教师提出这堂课我们就来学习点到直线的距离,并板书写课题:点到直线的距离.

    二、解决问题

    多媒体显示:已知点P(x0y0),直线Ax+By+C=0,求点P到直线的距离.

    怎样求点到直线距离呢?学生应该很快能回答出,做垂线找垂足Q,求线段PQ的长度.怎样用点的坐标和直线方程求和表示点到直线距离呢?

    教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况.学生提出平行于x轴和y轴的特殊情况.显示图形:

     

     

     

     

     

     

     

     

     

     

    板书:

    如何求

    学生思考回答下列想法:

    思路一:过点,根据点斜式写出直线方程,由联立方程组解得点坐标,然后利用两点距离公式求得.

    教师评价:此方法思路自然,但是运算繁琐.并多媒体展示求解过程.

    解:直线,即

     

     

     

     

     

     

     

     

    说明:本过程只展示,不在课堂推导.

    教师提问:能否用其它方法,不求点Q的坐标,求线段PQ的长度?

    学生思考:放在三角形---特殊三角形---直角三角形中.

    教师提问:如何构造三角形?第三个顶点选在什么位置?

    学生思考:可能在直线x轴的交点M或与y轴交点N,或过P点做x,y轴的平行线与直线的交点RS

    教师根据学生提出的点的位置作分析,求解过程的繁与简,最后决定方法.下列是学生可能提到的情况:

    思路二:在直角PQM,或直角PQN,求边长与角(角与直线到直线角有关),用余弦值.

    思路三:在直角PQR,或直角PQS,求边长与角(角与直线倾斜角有关,但分情况),用余弦值.

    思路四:在直角PRS中,求线段PRPSRS,利用等面积法(不涉及角和分情况),求得线段PQ长.

    学生练习求解思路四.教师巡视,根据学生情况演示过程.

    解:设

     

     

     

          

     

    说明:如果学生没有想到思路二、三,教师提示做课后思考作业题目.

    教师提问:上式是由条件下得出,对成立吗?

    P在直线上成立吗?

    公式结构特点是什么?用公式时直线方程是什么形式?

    由此推导出点P(x0y0)到直线Ax+By+C=0距离公式:

     

         

     

    教师继续引导学生思考,不构造三角形可以求吗?(在前面学习的向量知识中,有向量的模.由于在证明两直线垂直时已经用到向量知识,且也提出过直线的法向量的概念.)能否用向量知识求解呢?

     

    思路五:已知直线的法向量,则,如何选取法向量?直线的方向向量,则法向量为,或,或其它.由师生一起分析得出取

    教师板演:

    ,由于点Q在直线上,所以满足直线方程,解得

    教师评析:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法.

     

    三、公式应用

    练习:

    1.解决课堂提出的实际问题.(学生口答)

    2.求点P0(1,2)到下列直线的距离 :

    3x=2    5y=3    2xy=10   y=4x+1

    练习选择:平行坐标轴的特殊直线,直线方程的非一般形式.

    练习目的:熟悉公式结构,记忆并简单应用公式.

    教师强调:直线方程的一般形式.

    例题:

    3.求平行线2x7y8=02x7y6=0的距离.

    教师提问:如何求两平行线间的距离?距离如何转化?

    学生回答:选其中一条直线上的点到另一条直线的距离.

    师生共同分析:点所在直线的任意性、点的任意性.

    学生自己练习,教师巡视.教师提问几个学生回答自己选取的点和直线以及结果.然后选择一种取任意点的方法进行板书.

    解:在直线2x7y6=0上任取点P(x0y0),则2 x07 y06=0,点P(x0y0)到直线2x7y8=0的距离是

      

     

     

     

     

     

     

     

     

     

     

     

    教师评述:本例题选取课本例题,但解法较多.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点P,求它到两条直线的距离,然后作差.

    引申思考:两平行线间距离公式.

    四、课堂小结:(由学生总结)

          知识:点到直线的距离的公式推导以及应用.

          数学思想方法:类比、转化、数形结合思想,特殊到一般的方法.

          多角度考虑问题,一题多解.

    五、布置作业

          课本习题7.3的第13----16题;

          总结写出点到直线距离公式的多种方法.

     

     

    教学设计说明:

    一、教材分析

    我主要从三方面:教材的地位和作用、教学目标分析、教学重点和难点来说明的。教学目标包括:知识、能力、德育等方面的内容。我确定教学目标的依据有教学大纲、考试大纲的要求、新教材的特点、所教学生的实际情况。

    二、教学方法和手段

    1、教学方法的选择

    1)指导思想:教师为主导,学生为主体,引导学生参与对事物的认识过程。

    2)教学方法:启发式讲解法、讨论法。

        2.教学手段的选用

    采用了电脑多媒体教具,不仅将数学问题形象、直观显示,便于学生思考,而且迅速展示部分纯计算的解题过程,提高课堂效率。

    三、教学过程

    这节课我分:提出问题——解决问题——公式应用——课堂小结——布置作业五个环节来完成。

    首先多媒体显示实例,引发学生的学习的兴趣和求知欲望,从而引出数学问题。通过一系列问题引导学生通过图形观察,进而分析、归纳总结选择较好的方法具体实施。关于思路五,在课本中没有出现这样的证法,我在课堂上选取这样的证法。主要是考虑到:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点。而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法,这样思路五的给出不仅符合新教材的要求,也为今后的学习方法奠定了基础。

    我选择练习目的:熟悉公式结构,记忆并简单应用公式,主要通过学生口答完成。我强调注意在公式中直线方程的一般式。例题的选取来自课本,但是课本只有一种特殊点的解法。我把本例题进行挖掘,引导学生多角度考虑问题。在整个过程中让学生注意体会解题方法中的灵活性。本节课小结主要由学生总结,教师补充,尤其数学思想方法教师加以解释。在整节课的处理中,采取了知识、方法来源于课本,挖掘其深度、广度,符合现代教学要求。

    相关教案

    高中数学2.2.4点到直线的距离教案:

    这是一份高中数学2.2.4点到直线的距离教案,共15页。教案主要包含了内容,技能要求,重要的数学思想,主要数学能力,知识点分析,简化的“三段论证模式”等内容,欢迎下载使用。

    人教版新课标B必修22.2.4点到直线的距离教案设计:

    这是一份人教版新课标B必修22.2.4点到直线的距离教案设计,共4页。

    人教版新课标B必修22.2.4点到直线的距离教案设计:

    这是一份人教版新课标B必修22.2.4点到直线的距离教案设计,共6页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map