|教案下载
终身会员
搜索
    上传资料 赚现金
    冀教初中数学九下《30.2 二次函数的图像和性质》word教案 (2)
    立即下载
    加入资料篮
    冀教初中数学九下《30.2 二次函数的图像和性质》word教案 (2)01
    冀教初中数学九下《30.2 二次函数的图像和性质》word教案 (2)02
    冀教初中数学九下《30.2 二次函数的图像和性质》word教案 (2)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第30章 二次函数30.2 二次函数的图像和性质教案

    展开
    这是一份初中冀教版第30章 二次函数30.2 二次函数的图像和性质教案,共11页。

    §2.4 二次函数y=ax2+bx+c的图象

    课时安排

        2课时

    从容说课

        本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.

        在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思

    等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.

    第1课时

       

        §2.4.1  二次函数y=ax2+bx+c的图象(一)

    教学目标

        (一)教学知识点

        1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.

        2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

        (二)能力训练要求

        1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

        2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

        (三)情感与价值观要求

        1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

        2.让学生学会与人合作,并能与他人交流思维的过程和结果.

    教学重点

        1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.

        2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

        3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

    教学难点

        能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

    教学方法

        探索——比较——总结法.

    教具准备

        投影片四张

        第一张:(记作§2.4.1 A)

        第二张:(记作§2.4.1 B)

        第三张:(记作§2.4.1 C)

        第四张:(记作§2.4.1 D)

    教学过程

        .创设问题情境、引入新课

        [师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

       .新课讲解

        一、比较函数y=3x2与y=3(X-1)2的图象的性质.

        投影片:(§2.4 A)

    (1)完成下表,并比较3x2和3(x-1)2的值,

    它们之间有什么关系?

    X

    -3

    -2

    -1

    0

    1

    2

    3

    4

    3x2

     

     

     

     

     

     

     

     

    3(x-1)2

     

     

     

     

     

     

     

     

    (2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?

    (3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

    (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?

        [师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.

        [生](1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27.

        (2)用描点法作出y=3(x-1)2的图象,如上图.

        (3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

        (4)当x>1时,函数y=3(x-1)2的值随x值的增大而增大,x<1时,y=3(x-1)2的值随x值的增大而减小.

        [师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?

        [生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.

        [师]能像上节课那样比较它们图象的性质吗?

        [生]相同点:

        a.图象都中抛物线,且形状相同,开口方向相同.

        b. 都是轴对称图形.

        c.都有最小值,最小值都为0.

        d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.

        不同点:

        a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.

        b. 它们的位置不问.

        c. 它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),

        联系:

        把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.

        二、做一做

        投影片:(§2.4.1 B)

        在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.

    [生]图象如下

        它们的图象的性质比较如下:

        相同点:

        a.图象都是抛物线,且形状相同,开口方向相同.

        b. 都足轴对称图形,对称轴都为x=1.

        c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

        不同点:

        a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

        b. 它们的位置不同.

        联系:

        把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.

        三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.

        [师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?

        [生]可以.

        二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

        [师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?

        [生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.

        [师]你能系统总结一下吗?

        [生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

        [师]下面我们就一般形式来进行总结.

        投影片:(§2.4.1 C)

    一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.

    (1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c>0时,向上移动,当c<0时,向下移动.

    (2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h>0时,向右移动,当h<0时,向左移动.

    (3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)2+k的图象.

    因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.

    下面大家经过讨论之后,填写下表:

    y=a(x-h)2+k

    开口方向

    对称轴

    顶点坐标

    a0

     

     

     

    a0

     

     

     

    四、议一议

        投影片:(§2,4.1 D)

    (1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

    (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

    (3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?

        [师]在不画图象的情况下,你能回答上面的问题吗?

        [生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.

        (2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).

        (3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x<-1时,y的值随x值的增大而减小;当x>-1时,y的值随x值的增大而增大.

        .课堂练习

        随堂练习

        .课时小结

        本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

        .课后作业

        习题2.4

        .活动与探究

        二次函数y=(x+2)2-1与y= (x-1)2+2的图象是由函数y=x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

        解:y= (x+2)2-1的图象是由y=x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y=x2的图象向右平移1个单位,再向上平移2个单位得到的.

        y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.

        y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.

    板书设计

    §2.4.1  二次函数y=ax2+bx+c的图象(一)
    一、1. 比较函数y=3x2与y=3(x-1)2

      图象和性质(投影片§2.4.1 A)

      2.做一做(投影片§2.4.1 B)

      3.总结函数y=3x2,y=3(x-1)2y=  3(x-1)2+2的图象之间的关系(投影片§2.4.1 C)

      4.议一议(投影片§2.4.1 D)

    二、课堂练习

      1.随堂练习

      2.补充练习

    三、课时小结

    四、课后作业

    备课资料

        参考练习

        在同一直角坐标系内作出函数y=-x2,y=-x2-1,y=-(x+1)2-1的图象,并讨论它们的性质与位置关系.

        解:图象略

        它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

    y=-x2的图象向下移动1个单位得到y=-x2-1 的图象;y=-x2的图象向左移动1个单位,向下移动1个单位,得到y=-(x+1)2-1的图象.

     

     

     

     

     

     

     

     

     

    第2课时

       

        §2.4.2  二次函数y=ax2+bx+c的图象(二)

    教学目标

        (一)教学知识点

        1.体会建立二次函数对称轴和顶点坐标公式的必要性.

        2.能够利用二次函数的对称轴和顶点坐标公式解决问题.

        (二)能力训练要求

        1.通过解决实际问题,让学生训练把教学知识运用于实践的能力.

        2.通过学生合作交流来解决问题,培养学生的合作交流能力.

        (三)情感与价值观要求

        1.经历将一些实际问题抽象为数学问题的过程,掌握数学的基础知识和基本技能,并能解决简单的问题.

        2.初步认识数学与人类生活的密切联系及对人类历史发展的作用.

    教学重点

        运用二次函数的对称轴和顶点坐标公式解决实际问题.

    教学难点

        把数学问题与实际问题相联系的过程.

    教学方法

        讲解法.

    教具准备

        投影片三张

        第一张:(记作§2.4.2 A)

        第二张:(记作§2.4.2 B)

        第三张:(记作§2.4.2 C)

    教学过程

        .创设问题情境,引入新课

        [师]上节课我们主要讨论了相关函数y=ax2,y=a(x-h)2,y=a(x-h)+k的图象的有关性质,特别练习了求函数的对称轴和顶点坐标.我们知道学习的目的就是为了应用,那么究竟有什么用处呢?本节课将学习有关二次函数的应用.

        .新课讲解

        一、1. 例题

        [师]前几节课我们研究了不同形式的二次函数的图象,形如y=ax2,y=ax2+c,y=a(x-h)2,y=a(x-h)2+k.并对它们的性质进行了比较.但对于二次函数的一般形式y=ax2+bx+c(a、b、c是常数,a0),它是属于上面形式中的哪一种呢?还是另外一种,它的对称轴和顶点坐标是什么呢?下面我们一起来讨论这个问题.

    投影片:(§2.4.2 A)

    例:求二次函数y=ax2+bx+c的对称轴和顶点坐标.

    解:把y=ax2+bx+c的右边配方,得

    y=ax2+bx+c

    =a(x2+)

    =a[x2+2·x+()2+]

    =a(x+)2+.

        [师]大家看配方以后的形式属于前面我们讨论过的哪一种形式呢?

        [生]属于y=a(x-h)2+k的形式.

        [师]在y=a(x-h)2+k的形式中,我们知道对称轴为x=h顶点坐标为(h,k).对比一下,y=ax2+bx+c中的对称轴和顶点坐标是什么呢?

        [生甲]对称轴是x= ,顶点坐标是(,).

        [师]确定吗?大家再讨论一下.

    [生]在y=a(x-h)2+k中是x-h,而y=a (x+)2+ 中是x+,它们的符号不同,应把y=a(x+2+ .进行变形得 y=a[x-(-)2]+ .再对照y=a(x-h)2+k的形式得对称轴为x=-,顶点燃坐标为(-

    [师]这位同学回答得非常棒.

        至此,所有的二次函数的形式我们就都讨论过了.

        下面我们来研究一些实际问题.

        二、有关桥梁问题

        投影片:(§2.4.2 B)

    下图所示桥梁的两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称.

    (1)钢缆的最低点到桥面的距离是多少?

    (2)两条钢缆最低点之间的距离是多少?

    (3)你是怎样计算的?与同伴进行交流.

        分析:因为两条钢缆都是抛物线形状,且开口向上.要求钢缆的最低点到桥面的距离就是要求抛物线的最小值.又因为左右两条抛物线关于y轴对称,所以它们的顶点也关于y轴对称,两条钢缆最低点之间的距离就是两条抛物线顶点的横坐标绝对值之和或其中一条抛物线顶点横坐标绝对值的2倍.已知二次函数的形式是一般形式,所以应先进行配方化为y=a(x-h)2+k的形式,即顶点式.

        解:y=0.0225x2+0.9x+10

        =0.0225(x2+40x+)

        二0.0225(x2+40x+400-400+)

        =0.0225(x+20)2+1.

        对称轴为x=-20.顶点坐标为(-20,1).

        (1)钢缆的最低点到桥面的距离是1米

        (2)两条钢缆最低点之间的距离是2×20=40米

        (3)是用配方法求得顶点坐标得到的,也可以直接代入顶点坐标公式中求得.

        [师]从上面的例题我们可知,抛物线在现实生活中的应用很广,因此大家要学好并运用好它,对于给出的问题要认真思考,把实际问题转化为数学问题,从而用数学知识解决实际问题.

        在上面的问题中,大家能否求出右面的抛物线的表达式呢?请互相交流.

    解:因为左右两条抛物线是关于y轴对称的,而关于y轴对称的图形的特点是,所有的对应点的坐标满足横坐标是互为相反数,纵坐标相等,我们可以利用这个特点,在原有的左面的抛物线的表达式的基础上,得到右面抛物线的表达式,即把y不变,x换为-x代入y=0.0225x2+0.9x+10中,得

    y=0.0225(-x)2+0.9(-x)+10

        =0.0225x2-0.9x+10.

        三、补充例题

        投影片:(§2.4.2 C)

    如右图,一边靠校园院墙,另外三

    边用50 m长的篱笆,围起一个长

    方形场地,设垂直院墙的边长为xm.

    (1)写出长方形场地面积y(m2)与x的函数关系式;

    (2)画出函数的图象;

    (3)求边长为多少时,长方形面积最大,最大是多少? 

        解:(1)垂直院墙的边长为x m,另一边长为(50-2x)m.则

      y=x(50-2x)=-2x2+50x=-2(x-)2+.

    (2)图象略.

    (3)由(1)得,当x=时,y最大=.

    所以当边长为m时,长方形面积最大,最大面积为 m2

        .课堂练习

        1.随堂练习

        2.补充练习

        确定下列抛物线的开口方向、对称轴与顶点坐标.

      (1)y=-x2+

    (2)y=x2-

    解:(1)y=-x2+

    =-(x2-)

    =-( x2-)

    =-(x-)2+.

    开口方向向下,对称轴为x=,顶点坐标为(,).

        (2)y=x2-

    =(x2-x-30)

    =(x2-x+--30)

    =(x-)2-.

    开口方向向上,对称轴是x=  ,顶点坐标为(, ).

        .课时小节

        本节课学习了如何用配方法把二次函数的一般形式化成顶点式,并能根据顶点式解决一些问题.

        .课后作业

        习题2.5

        .活动与探究

        利用Z+Z智能教育平台(新世纪版)研究二次函数的图象.

        利用Z+Z智能教育平台(新世纪版)可以探索二次函数y=ax2+bx+c的系数(a,b,c与图象变化之间的关系.

        先考察二次函数y=ax2的系数a对图象的影响.

    利用Z十Z智能教育平台(新世纪版)在计算机上作出二次函数y=ax2的图象.其中系数a可以通过鼠标拖动y轴上标识为a的点而变化.图1和图2是a取不同值时得到的两个图象:

    板书设计

    §2.4.2  二次函数y=ax2+bx+c的图象(二)

    一、1. 例题(投影片§2.4.2 A)

      2.有关桥梁问题(投影片§2.4.2 B)

      3.补充例题(投影片§2.4.2 C)

    二、课堂练习

       1.随堂练习

       2.补充练习

    三、课时小结

    四、课后作业

    备课资料(略)

    相关教案

    冀教版九年级下册32.1 投影教学设计及反思: 这是一份冀教版九年级下册32.1 投影教学设计及反思,

    数学九年级下册第30章 二次函数30.2 二次函数的图像和性质教案设计: 这是一份数学九年级下册第30章 二次函数30.2 二次函数的图像和性质教案设计,共5页。教案主要包含了活动二的性质,一起探究等内容,欢迎下载使用。

    初中数学冀教版九年级下册32.2 视图教学设计: 这是一份初中数学冀教版九年级下册32.2 视图教学设计,共7页。教案主要包含了教学设计思想,媒体设计思路,教学目标,教学流程安排等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map