人教A版 (2019)必修 第二册第六章 平面向量及其应用6.4 平面向量的应用课前预习ppt课件
展开这是一份人教A版 (2019)必修 第二册第六章 平面向量及其应用6.4 平面向量的应用课前预习ppt课件,共40页。PPT课件主要包含了激趣诱思,知识点拨,答案D,探究一,探究二,探究三,素养形成,当堂检测,答案60,答案A等内容,欢迎下载使用。
解三角形在现实生活中有着广泛的应用,例如在浩瀚无垠的海面上如何确保轮船不迷失方向,并保持一定的航速和航向呢?这就需要用到解三角形中关于角度测量这方面的问题.再如喜马拉雅山,我们怎样测出它的高度?这就需要用到解三角形中关于高度测量这方面的问题.由此可见学好解三角形知识,还能在现实生活中发挥“一技之长”.
知识点一、测量问题中的常用概念1.基线(1)定义:在测量过程中,我们把根据测量的需要而确定的线段叫做基线.(2)性质:为使测量具有较高的精确度,应根据实际需要选取合适的基线长度.一般来说,基线越长,测量的精确度越高.2.坡角与坡度坡面的铅直高度与水平宽度之比叫做坡度,如图所示,α为坡角,坡比
3.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角中,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角(如图所示).
4.视角观察物体的两端,视线张开的夹角叫做视角,如图所示.
5.方位角与方向角(1)方位角从正北方向顺时针转到目标方向线所成的水平角.如点B的方位角为α,如图①所示.(2)方向角从指定方向线到目标方向线所成的小于90°的水平角.如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°,如图②所示.
微练习(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系是( )A.α>βB.α=βC.α+β=90°D.α+β=180°(2)若P在Q的北偏东37°方向上,则Q在P的( )A.东偏北53°方向上B.北偏东37°方向上C.南偏西37°方向上D.南偏西53°方向上
(3)下图中,两个方向对应的方位角分别等于 .
解析:(1)如图,从A处望B处的仰角α与从B处望A处的俯角β是内错角,由水平线平行,得α=β.
(2)如图所示,Q在P的南偏西37°的方向上.
(3)左题图中方向对应的方位角等于30°,右题图中方向对应的方位角等于240°.答案:(1)B (2)C (3)30°,240°
知识点二、解决实际测量问题的思路和步骤1.基本思路
2.一般步骤(1)分析:理解题意,弄清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型;(3)求解利用正弦定理、余弦定理解三角形,求得数学模型的解;(4)检验:检验所求的解是否符合实际问题,从而得出实际问题的解.
微练习海上有A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C岛间的距离是( )
测量距离问题例1如图 ,一名学生在河岸紧靠岸边笔直行走,开始在A处,经观察,在河的对岸有一参照物C,与学生前进方向成30°角,学生前进200 m 后到达点B,测得该参照物与前进方向成75°角.(1)求点A与参照物C的距离;(2)求河的宽度.分析根据图形,先由已知求出∠ACB,再利用正弦定理求得AC的长度,最后在直角三角形中求出河的宽度.
反思感悟 三角形中与距离有关的问题的求解策略(1)解决与距离有关的问题,若所求的线段在一个三角形中,则直接利用正弦定理、余弦定理求解即可;若所求的线段在多个三角形中,要根据条件选择适当的三角形,再利用正弦定理、余弦定理求解.(2)解决与距离有关的问题的关键是转化为求三角形中的边,分析所解三角形中已知哪些元素,还需要求出哪些元素,灵活应用正弦定理、余弦定理来解决.
变式训练1如图所示,为了测定河的宽度,在一岸边选定两点A,B,望对岸标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度为 m.
解析:作CD⊥AB,垂足为D,则CD即为河的宽度.在△ABC中,∠CAB=30°,∠CBA=75°,所以∠ACB=75°,∠ACB=∠ABC,所以AC=AB=120 m.
测量高度问题例2如图,为了测量河对岸的塔高AB,选取与塔底B在同一水平面内的两个测点C和D,测得CD=200 m,在点C和点D测得塔顶A的仰角分别是45°和30°,且∠CBD=30°,求塔高AB.分析先在Rt△ABC和Rt△ABD中,用AB表示BC和BD,再在△BCD中,由余弦定理建立方程,求得AB.
反思感悟 测量高度问题的求解策略(1)在测量底部不可到达的建筑物的高度时,可以借助正弦定理或余弦定理,构造两角(两个仰角或两个俯角)和一边或三角(两个方向角和仰角)和一边,如图所示.
(2)解决测量高度问题的一般步骤是:
变式训练2如图,在山顶铁塔上B处测得一点A的俯角为α,在塔底C处测得A处的俯角为β.若铁塔高为m米,则山高CD为 米.
测量角度问题角度1 实际测量中的角度问题例3地图测绘人员在点A测得某一目标参照物P在他的北偏东30°的方向,且距离他40 m,之后该测绘人员沿正北方向行走了40 m,达到点B.试确定此时目标参照物P相对于他的方位角以及他与目标参照物P的距离.分析画出图形,在三角形中,利用余弦定理求出内角的大小以及边的长度,从而确定相应的方位角以及距离.
因为AB=40 m,所以AB=PB,所以∠APB=∠PAB=30°,所以∠PBA=120°.因此测绘人员到达点B时,目标参照物P相对于该测绘人员的方位角为180°-120°=60°,且目标参照物P与他的距离为40 m.
变式训练3如图所示,从A到B,方位角是50°,距离是470 m;从B到C,方位角是80°,距离是860 m;从C到D,方位角是150°,距离是640 m,试计算从A到D的方位角和距离.
角度2 航海与追及中的角度问题例4某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile的C处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.分析本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t,找出等量关系,再解三角形.
反思感悟 测量角度问题画示意图的基本步骤
延伸探究 本题中其他条件不变,将“渔轮向小岛靠拢的速度”改为“10 n mile/h”,将“我海军舰艇的速度”改为“10 n mile/h”,求舰艇的航向和靠近渔轮所需要的时间.
函数与方程思想在解三角形应用举例中的应用典例如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,
(1)求索道AB的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?分析(1)利用正弦定理求出AB的长.(2)先设出乙出发后所用的时间t,再建立时间t与甲、乙间距离d的函数关系式,利用关系式求最值.
方法点睛与函数思想相联系的就是方程思想.所谓方程思想,就是在解决问题时,用事先设定的未知数沟通问题所涉及的各量间的制约关系,列出方程(组),从而求出未知数及各量的值,使问题获得解决,所设的未知数沟通了变量之间的联系.方程可以看做未知量与已知量相互制约的条件,它架设了由已知探索未知的桥梁.函数与方程思想在数学中有着广泛的应用,本章在利用正弦定理、余弦定理求角或边长时,往往渗透着函数与方程思想.
1.如图,从山顶A望地面上C,D两点,测得它们的俯角分别为45°和30°,已知CD=100 m,点C位于BD上,则山高AB等于( )
2.从某电视塔的正东方向的A处,测得塔顶仰角是60°,从电视塔的西偏南30°的B处,测得塔顶仰角为45°,A,B间距离为35 m,则此电视塔的高度是( )
3.一艘轮船从A出发,沿南偏东70°的方向航行40 n mile后到达海岛B,然后从B出发,沿北偏东35°的方向航行了40 n mile到达海岛C.如果下次航行直接从A出发到C,那么此船航行的方向和路程分别为( )
4.在某次军事演习中,红方为了准确分析战场形势,在两个相距为 a的军事基地C和D处测得蓝方两支精锐部队分别在A处和B处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队之间的距离.
5.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12 n mile,渔船乙以10 n mile/h的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2 h追上.(1)求渔船甲的速度;(2)求sin α的值.
相关课件
这是一份人教A版 (2019)必修 第二册第六章 平面向量及其应用6.4 平面向量的应用教课内容课件ppt,共22页。PPT课件主要包含了导入新课,精彩课堂,测量距离问题,测量高度问题,课堂练习,北偏东40°,课堂总结等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册6.4 平面向量的应用授课课件ppt,共38页。PPT课件主要包含了素养目标·定方向,必备知识·探新知,基线的概念与选择原则,知识点1,相关术语,知识点2,正北方向,关键能力·攻重难等内容,欢迎下载使用。
这是一份高中数学6.4 平面向量的应用集体备课课件ppt,共49页。PPT课件主要包含了基线长度,测量距离问题,测量高度问题,角度问题等内容,欢迎下载使用。