![3.6整式的加减 解答题专题达标测评 2021-2022学年苏科版七年级数学上册(word版含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12287971/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![3.6整式的加减 解答题专题达标测评 2021-2022学年苏科版七年级数学上册(word版含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12287971/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![3.6整式的加减 解答题专题达标测评 2021-2022学年苏科版七年级数学上册(word版含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12287971/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学3.6 整式的加减课后作业题
展开这是一份初中数学3.6 整式的加减课后作业题,共7页。试卷主要包含了计算,整式化简,化简,计算题,化简下列各式,先化简,再求值等内容,欢迎下载使用。
2021-2022学年苏科版七年级数学上册《3.6整式的加减》解答题专题达标测评(附答案)
(共20题,每小题6分,满分120分)
1.计算:
(1)5ab2﹣3ab2+ab2;
(2)(7m2n﹣5mn)﹣(4m2n﹣5mn).
2.整式化简:
(1)x﹣5y+(﹣3x+6y);
(2)3a2b2+4(a2b2+ab2)﹣(4ab2+5a2b2).
3.计算:
(1)3(a+b)﹣(3a﹣2b);
(2)xy2﹣[x+(6y+2xy2)﹣3x].
4.化简:
(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);
(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].
5.计算题
(1)4(2x2﹣3x+1)﹣2(4x2﹣2x+3)
(2)1﹣3(2ab+a)+[1﹣2(2a﹣3ab)]
6.化简下列各式:
(1)2(ab﹣2c)+(﹣ab+2c);
(2)﹣2(3x2﹣xy)+3(x2﹣xy+2).
7.化简:2(x2﹣xy)﹣(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy)].
8.化简:5a2b﹣2(a2b﹣2ab2)﹣3(2ab2﹣a2b).
9.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.
10.先化简,再求值:﹣xy,其中x=3,y=﹣.
11.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.
12.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.
13.先化简,再求值:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b,其中a=﹣2,b=.
14.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7
(1)求A等于多少?
(2)若|a+1|+(b﹣2)2=0,求A的值.
15.已知M=2x2﹣2xy+y2,N=3x2+xy﹣2y2,求2M﹣3N.
16.已知多项式A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,求:
(1)3A+B;
(2)A﹣3B.
17.已知:A=x2﹣3xy﹣y2,B=x2﹣3xy﹣3y2.
(1)求整式M=2A﹣B;
(2)当x=﹣2,y=1时,求整式M的值.
18.已知多项式M=(2x2+3xy+2y)﹣2(x2+x+yx+1).
(1)当x=1,y=2,求M的值;
(2)若多项式M与字母x的取值无关,求y的值.
19.已知A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2.计算:
(1)B+2A;
(2)4A﹣3B.
20.已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.
(1)求a,b的值;
(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.
参考答案
1.解:(1)5ab2﹣3ab2+ab2
=ab2;
(2)(7m2n﹣5mn)﹣(4m2n﹣5mn)
=7m2n﹣5mn﹣4m2n+5mn
=3m2n.
2.解:(1)原式=x﹣5y﹣3x+6y
=﹣2x+y;
(2)原式=3a2b2+4a2b2+ab2﹣4ab2﹣5a2b2
=2a2b2﹣ab2.
3.解:(1)原式=3a+3b﹣3a+2b
=5b.
(2)原式=xy2﹣(x+3y+xy2﹣3x)
=xy2﹣(3y+xy2﹣2x)
=xy2﹣3y﹣xy2+2x
=2x﹣3y.
4.解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b
=3a2b﹣ab2;
(2)原式=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn
=mn.
5.解:(1)原式=8x2﹣12x+4﹣8x2+4x﹣6=﹣8x﹣2;
(2)原式=1﹣6ab﹣3a+(1﹣4a+6ab)=1﹣6ab﹣3a+1﹣4a+6ab=2﹣7a.
6.解:(1)原式=2ab﹣4c﹣ab+2c=ab﹣2c;
(2)原式=﹣6x2+2xy+3x2﹣3xy+6=﹣3x2﹣xy+6.
7.解:原式=2x2﹣2xy﹣2x2+3xy﹣2[x2﹣2x2+xy]
=2x2﹣2xy﹣2x2+3xy﹣2(﹣x2+xy)
=2x2﹣2xy﹣2x2+3xy+2x2﹣2xy
=2x2﹣xy.
8.解:原式=5a2b﹣2a2b+4ab2﹣6ab2+3a2b.
=6a2b﹣2ab2.
9.解:原式=x﹣2x+y2﹣x+y2
=﹣3x+y2,
当x=﹣2,y=时,原式=6.
10.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,
当x=3,y=﹣时,原式=﹣1=﹣.
11.解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,
当a=1,b=﹣2时,
原式=﹣1×(﹣2)2=﹣4.
12.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)
=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2
=﹣6xy
当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.
13.解:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b
=2ab2﹣a3b﹣2(ab2﹣a3b)﹣5a3b
=2ab2﹣a3b﹣2ab2+a3b﹣5a3b
=﹣5a3b,
当a=﹣2,b=时,
原式=﹣5×(﹣2)3×
=8.
14.解:(1)由题意得:A=2(﹣4a2+6ab+7)+(7a2﹣7ab)=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14;
(2)∵|a+1|+(b﹣2)2=0,
∴a=﹣1,b=2,
则原式=﹣1﹣10+14=3.
15.解:原式=2(2x2﹣2xy+y2)﹣3(3x2+xy﹣2y2)
=4x2﹣4xy+2y2﹣9x2﹣3xy+6y2
=﹣5x2﹣7xy+8y2.
16.解:(1)∵A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,
∴3A+B=3(2m2﹣4mn+2n2)+(m2+mn﹣3n2)
=6m2﹣12mn+6n2+m2+mn﹣3n2
=7m2﹣11mn+3n2;
(2)∵A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,
∴A﹣3B=(2m2﹣4mn+2n2)﹣3(m2+mn﹣3n2)
=2m2﹣4mn+2n2﹣3m2﹣3mn+9n2
=﹣m2﹣7mn+11n2.
17.解:(1)M=2(x2﹣3xy﹣y2)﹣(x2﹣3xy﹣3y2)
=2x2﹣6xy﹣2y2﹣x2+3xy+3y2
=x2﹣3xy+y2.
(2)当x=﹣2,y=1时,
原式=4+6+1
=11.
18.解:(1)M=2x2+3xy+2y﹣2x2﹣2x﹣2yx﹣2
=xy﹣2x+2y﹣2,
当x=1,y=2时,
原式=2﹣2+4﹣2=2;
(2)∵M=xy﹣2x+2y﹣2=(y﹣2)x+2y﹣2,且M与字母x的取值无关,
∴y﹣2=0,
解得:y=2.
19.解:(1)∵A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2
∴B+2A=﹣2m2+8mn﹣3n2+2(m2﹣3mn+n2)
=﹣2m2+8mn﹣3n2+2m2﹣6mn+2n2
=2mn﹣n2,
(2)∵A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2
∴4A﹣3B=4(m2﹣3mn+n2)﹣3(﹣2m2+8mn﹣3n2)
=4m2﹣12mn+4n2+6m2﹣24mn+9n2
=10m2﹣36mn+13n2.
20.解:(1)∵多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关,
∴(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)
=(2﹣2b)x2+(a+3)x+ty3﹣5my﹣3,
则2﹣2b=0,a+3=0,
解得:b=1,a=﹣3;
(2)∵当y=1时,代数式的值3,则t﹣5m﹣3=3,
故t﹣5m=6,
相关试卷
这是一份初中数学苏科版七年级上册第3章 代数式3.6 整式的加减精品课时作业,共8页。试卷主要包含了若多项式3x2﹣3等内容,欢迎下载使用。
这是一份初中数学苏科版七年级上册3.6 整式的加减优秀练习,共12页。
这是一份数学七年级上册第3章 代数式3.6 整式的加减优秀随堂练习题,共10页。试卷主要包含了 下列各式去括号正确的是, a-的相反数是等内容,欢迎下载使用。