所属成套资源:高考数学(文科)一轮复习教学案
一轮复习专题8.45椭圆及其性质(五)(原卷版)教案
展开
这是一份一轮复习专题8.45椭圆及其性质(五)(原卷版)教案,共8页。教案主要包含了题组训练等内容,欢迎下载使用。
1.理解椭圆的定义及其标准方程,并会求椭圆标准方程;
2.掌握椭圆的基本性质;
3.掌握求椭圆离心率的基本方法。
教学过程
(一)必备知识:
1.椭圆的定义
(1)定义:平面内与两个定点F1,F2的距离的和等于常数2a(2a______|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.
※(2)椭圆第二定义(见人教A版教材选修1-1 P41例6、P43):平面内动点M到定点F的距离和它到定直线l的距离之比等于常数e(0<e<1)的轨迹叫做椭圆.定点F叫做椭圆的一个焦点,定直线l叫做椭圆的一条准线,常数e叫做椭圆的__________.
2.椭圆的标准方程及几何性质
自查自纠:1.(1)> 焦点 焦距 (2)离心率
2.(2)eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0) (5)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
(7)F1(-c,0),F2(c,0) (9)e=eq \f(c,a)(0<e<1)
二、题组训练:
题组一:
例1.已知椭圆:的两个焦点为,,若椭圆上存在点使得为钝角,则该椭圆的离心率的取值范围是( )
A. B. C. D.
例2.已知是椭圆的左,右焦点,过且垂直于轴的直线与椭圆交于两点,若是锐角三角形,则该椭圆离心率的取值范围是( )
A. B. C. D.
例3.椭圆上一点关于原点的对称点为为其右焦点,若,设,且,则该椭圆离心率的最大值为( )
A.1 B. C. D.
例4.已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是( )
A.B.C.D.
练习:
1.已知椭圆C:()的左右焦点分别为,如果C上存在一点Q,使,则椭圆的离心率的取值范围为( )
A.B.C.D.
2.已知椭圆的两个焦点分别为,若椭圆上存在点使得是钝角,则椭圆离心率的取值范围是( )
A. B. C. D.
3.已知椭圆,点,是长轴的两个端点,若椭圆上存在点,使得,则该椭圆的离心率的最小值为( )
A.B.C.D.
4.椭圆,点,为椭圆的左、右焦点,在椭圆上存在点,点在以原点为圆心,为半径的圆上,则椭圆的离心率取值范围是( )
A.B.C. D.
5.已知椭圆上有一点,它关于原点的对称点为,点为椭圆的右焦点,且,设,且,则该椭圆的离心率的取值范围为( )
A.B.C.D.
6.在平面直角坐标系中,点为椭圆:的下顶点,,在椭圆上,若四边形为平行四边形,为直线的倾斜角,若,则椭圆的离心率的取值范围为( )
A.B.C.D.
7.已知椭圆与圆,若在椭圆上存在点,过作圆的切线,,切点为,使得,则椭圆的离心率的取值范围是( )
A.B.C.D.
题组二:
例1.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为( )
A.B.C.D.
例2.已知椭圆,直线与椭圆相交于,两点,若椭圆上存在异于,两点的点使得,则离心率的取值范围为( )
A.B.C.D.
例3.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,点Q(c,)在椭圆的外部,点P是椭圆C上的动点,且恒成立,则椭圆离心率的取值范围是( )
A.B.C.D.
练习:
1.已知,为椭圆的两个焦点,为椭圆短轴的一个端点,,则椭圆的离心率的取值范围为( )
A.B.C.D.
2.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )
A.B.C.D.
3.已知为椭圆的两个焦点,为椭圆短轴的一个端点,,则椭圆的离心率的取值范围( )
A. B. C. D.
4.设椭圆C:(a>b>0)的右焦点为F,椭圆C上的两点A,B关于原点对称,且满足,|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是( )
A. B. C. D.
题组三:
例1.椭圆中心为原点,且焦点在轴上,为椭圆的右顶点,为椭圆上一点,,则该椭圆离心率的取值范围是( )
A.B.C.D.
例2.已知F1(-c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且=c2,则此椭圆离心率的取值范围是( )
A.B.C.D.
练习:
1.已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得中,,则该椭圆离心率的取值范围为( )
A.(0,-1)B.C. D.(-1,1)
2.已知椭圆(),,为椭圆上的两点,线段的垂直平分线交轴于点,则椭圆的离心率的取值范围是( )
A.B.C.D.
题组四:
例1.已知两定点和,动点在直线上移动,椭圆以,为焦点且经过点,则椭圆的离心率的最大值为( )
A. B. C. D.
例2.椭圆上有一点,,分别为椭圆的左、右焦点,椭圆内一点在线段的延长线上,且,则该椭圆离心率的取值范围是( )
A.B.C.D.
练习:
1.设椭圆 ()的一个焦点点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )
A.B.C.D.
2.已知椭圆的左、右焦点分别为,若在直线上存在点使线段的中垂线过点,则椭圆离心率的取值范围是( )
A.B.C.D.
课外作业:
1.已知分别是椭圆的左、右焦点,若椭圆上存在点,使,则椭圆的离心率的取值范围为( )
A.B.C.D.
2.已知椭圆上一点A关于原点的对称点为点B,F为其右焦点,若,设,且,则该椭圆离心率的取值范围为( )
A.B.C.D.
3.已知椭圆:的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点与直线的距离不小于,则椭圆的离心率的取值范围是( )
A.B.C.D.
4.椭圆的离心率的最小值为( )
A. B. C. D.
5.已知椭圆的左、右焦点分别为,若椭圆上恰有6个不同的点使得为等腰三角形,则椭圆的离心率的取值范围是( )
A.B.C.D.
6.圆锥曲线与空间几何体具有深刻而广泛的联系,如图所示,底面半径为1,高为3的圆柱内放有一个半径为1的球,球与圆柱下底而相切,作不与圆柱底面平行的平面与球相切于点,若平面与圆柱侧面相交所得曲线为封闭曲线,是以为一个焦点的椭圆,则的离心率的取值范围是( )
A.B.C.D.
7.已知点为坐标原点,点是椭圆:的左焦点,点、、分别为椭圆的左、右顶点和上顶点.点为椭圆上一点,且轴,直线交线段于点,若直线交线段于点,且,则椭圆的离心率的取值范围是( )
A.B.C.D.
8.已知椭圆的左焦点为,左、右顶点分别为,上顶点为.过作圆,其中圆心的坐标为.当时,椭圆离心率的取值范围为( )
A.B.C.D.焦点在x轴上
焦点在y轴上
(1)图形
(2)标准方程
eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
(3)范围
-a≤x≤a,-b≤y≤b
-a≤y≤a,-b≤x≤b
(4)中心
原点O(0,0)
(5)顶点
A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)
(6)对称轴
x轴,y轴
(7)焦点
F1(0,-c),F2(0,c)
(8)焦距
2c=2eq \r(a2-b2)
(9)离心率
※(10)准线
x=±eq \f(a2,c)
y=±eq \f(a2,c)
相关教案
这是一份一轮复习专题8.45椭圆及其性质(五)(解析版)教案,共18页。教案主要包含了题组训练等内容,欢迎下载使用。
这是一份一轮复习专题8.44椭圆及其性质(四)(原卷版)教案,共11页。教案主要包含了题组训练等内容,欢迎下载使用。
这是一份一轮复习专题8.44椭圆及其性质(四)(解析版)教案,共25页。教案主要包含了题组训练等内容,欢迎下载使用。