2020-2021学年第3章 图形的相似3.1 比例线段一课一练
展开一、选择题
1.已知四个数a,b,c,d成比例,若a=3,b=4,c=9,则d等于( )
A.8 B.12 C.6 D.18
2.若3x=5y(y≠0),则下列各式成立的是( )
A.eq \f(x,3)=eq \f(5,y) B.eq \f(y,3)=eq \f(5,x) C.eq \f(y,x)=eq \f(5,3) D.eq \f(x,5)=eq \f(y,3)
3.【2020·毕节】已知eq \f(a,b)=eq \f(2,5),则eq \f(a+b,b)的值为( )
A.eq \f(2,5) B.eq \f(3,5) C.eq \f(7,5) D.eq \f(2,3)
4.已知eq \f(x,y)=eq \f(3,4),那么下列等式中不成立的是( )
A.eq \f(x,x+y)=eq \f(3,7) B.eq \f(x-y,y)=eq \f(1,4) C.eq \f(x+3,y+4)=eq \f(3,4) D.4x=3y
5.【中考·雅安】若a∶b=3∶4,且a+b=14,则2a-b的值是( )
A.4 B.2 C.20 D.14
6.【2020·黑龙江改编】方程eq \f(x,x-2)=eq \f(4,3)的解为( )
A.x=-8 B.x=8 C.x=eq \f(8,7) D.x=-eq \f(8,7)
7.【中考·牡丹江】若x:y=1:3,2y=3z,则eq \f(2x+y,z-y)的值是( )
A.-5 B.-eq \f(10,3) C.eq \f(10,3) D.5
8.若ab=cd=ef=6,且4b-7d+3f≠0,那么4a-7c+3e4b-7d+3f的值为( )
A.6B.32C.-67D.2
9.若a∶b=3∶2,且b2=ac,则b∶c=( )
A.4∶3 B.3∶2 C.2∶3 D.3∶4
10.已知eq \f(a,b)=eq \f(b,c),则关于x的一元二次方程ax2+2bx+c=0的根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.没有实数根
D.无法判断
11.已知4∶x=x∶16,则x的值为( )
A.4 B.8 C.-8或8 D.-8
12.若x2=y3=z4=4772021,则下列各式中正确的是( )
A.2x=3y=4zB.2x+2y5=z2C.x+12=y+13D.x+12=z-24
二、填空题
13.若a=2,b=4,c=5,且a∶b=c∶d,则d=________.
14.【2020·湘潭】若eq \f(y,x)=eq \f(3,7),则eq \f(x-y,x)=________.
15.【2021·达州渠县期末改编】如果eq \f(x+y,x)=eq \f(5,3),那么eq \f(y,x)=________.
16.【2020·娄底】若eq \f(b,a)=eq \f(d,c)=eq \f(1,2)(a≠c),则eq \f(b-d,a-c)=________.
17.【中考·成都】已知eq \f(a,6)=eq \f(b,5)=eq \f(c,4),且a+b-2c=6,则a的值为____________.
18.已知x∶y=1∶2,2y=3z,则2x+yy+3z= .
19.若a∶b=2∶3,a∶c=3∶5,则a∶b∶c=________,eq \f(2a+2b,3c)=________.
20.【中考·兰州】如果eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=________.
三、解答题
21.【2021·金华期末】已知eq \f(a,2)=eq \f(b,3)=eq \f(c,5)≠0,求eq \f(2a-3b+4c,5a+3b-2c)的值.
22.求下列各式中x的值.
(1)3∶x=2∶(x+1);
(2)1∶(x-5)=2∶(x+5).
23.已知eq \f(a,b)=eq \f(c,d),求证:eq \f(a-b,b)=eq \f(c-d,d).
24.已知a,b,c为△ABC的三边长,且a+b+c=48,eq \f(a,4)=eq \f(b,5)=eq \f(c,7),求△ABC三边的长.
25.已知a,b,c都不为0,如果2a-b-4c=0,a+b-5c=0,求a:b:c.
(1)已知a:b:c=3:4:5,求eq \f(2a-3b+c,a+b)的值;
(2)已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=2,且b-2d+3f≠0,求eq \f(a-2c+3e,b-2d+3f) 的值.
26.阅读下列解题过程:
已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=…=eq \f(m,n),若b+d+f+…+n≠0,
求证:eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(m,n).
证明:设eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=…=eq \f(m,n)=k(k≠0),
则a=bk,c=dk,e=fk,…,m=nk,
又b+d+f+…+n≠0,
∴eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(bk+dk+fk+…+nk,b+d+f+…+n)=eq \f((b+d+f+…+n)k,b+d+f+…+n)=k.
∴eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(m,n).
运用上述结论解决下面的问题:
(1)已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=eq \f(2,3),b+2d-3f≠0,求eq \f(a+2c-3e,b+2d-3f)的值;
(2)已知eq \f(a,b+c)=eq \f(b,a+c)=eq \f(c,a+b)=k,则函数y=kx+k的图象必经过( )
A.第一、二象限 B.第二、三象限
C.第三、四象限 D.第一、四象限
(3)已知eq \f(b+c,a)=eq \f(a+c,b)=eq \f(a+b,c)=k,求k的值.
参考答案
一、选择题
1.已知四个数a,b,c,d成比例,若a=3,b=4,c=9,则d等于( B )
A.8 B.12 C.6 D.18
2.若3x=5y(y≠0),则下列各式成立的是( D )
A.eq \f(x,3)=eq \f(5,y) B.eq \f(y,3)=eq \f(5,x) C.eq \f(y,x)=eq \f(5,3) D.eq \f(x,5)=eq \f(y,3)
3.【2020·毕节】已知eq \f(a,b)=eq \f(2,5),则eq \f(a+b,b)的值为( C )
A.eq \f(2,5) B.eq \f(3,5) C.eq \f(7,5) D.eq \f(2,3)
4.已知eq \f(x,y)=eq \f(3,4),那么下列等式中不成立的是( B )
A.eq \f(x,x+y)=eq \f(3,7) B.eq \f(x-y,y)=eq \f(1,4) C.eq \f(x+3,y+4)=eq \f(3,4) D.4x=3y
5.【中考·雅安】若a∶b=3∶4,且a+b=14,则2a-b的值是( A )
A.4 B.2 C.20 D.14
【点拨】∵a∶b=3∶4,∴3b=4a,∴b=eq \f(4a,3).又∵a+b=14,
∴a+eq \f(4a,3)=14,解得a=6.∴b=8.∴2a-b=2×6-8=4.
6.【2020·黑龙江改编】方程eq \f(x,x-2)=eq \f(4,3)的解为( B )
A.x=-8 B.x=8 C.x=eq \f(8,7) D.x=-eq \f(8,7)
7.【中考·牡丹江】若x:y=1:3,2y=3z,则eq \f(2x+y,z-y)的值是( A )
A.-5 B.-eq \f(10,3) C.eq \f(10,3) D.5
8.若ab=cd=ef=6,且4b-7d+3f≠0,那么4a-7c+3e4b-7d+3f的值为( A )
A.6B.32C.-67D.2
9.若a∶b=3∶2,且b2=ac,则b∶c=( B )
A.4∶3 B.3∶2 C.2∶3 D.3∶4
10.已知eq \f(a,b)=eq \f(b,c),则关于x的一元二次方程ax2+2bx+c=0的根的情况是( A )
A.有两个相等的实数根
B.有两个不相等的实数根
C.没有实数根
D.无法判断
11.已知4∶x=x∶16,则x的值为( C )
A.4 B.8 C.-8或8 D.-8
12.若x2=y3=z4=4772021,则下列各式中正确的是( B )
A.2x=3y=4zB.2x+2y5=z2C.x+12=y+13D.x+12=z-24
二、填空题
13.若a=2,b=4,c=5,且a∶b=c∶d,则d=________.
【答案】10
14.【2020·湘潭】若eq \f(y,x)=eq \f(3,7),则eq \f(x-y,x)=________.
【答案】eq \f(4,7)
15.【2021·达州渠县期末改编】如果eq \f(x+y,x)=eq \f(5,3),那么eq \f(y,x)=________.
【答案】eq \f(2,3)
16.【2020·娄底】若eq \f(b,a)=eq \f(d,c)=eq \f(1,2)(a≠c),则eq \f(b-d,a-c)=________.
【答案】eq \f(1,2)
17.【中考·成都】已知eq \f(a,6)=eq \f(b,5)=eq \f(c,4),且a+b-2c=6,则a的值为____________.
【点拨】设eq \f(a,6)=eq \f(b,5)=eq \f(c,4)=x(x≠0),∴a=6x,b=5x,c=4x.
∵a+b-2c=6,
∴6x+5x-8x=6,解得x=2,∴a=12.
【答案】12
18.已知x∶y=1∶2,2y=3z,则2x+yy+3z= .
【答案】23
19.若a∶b=2∶3,a∶c=3∶5,则a∶b∶c=________,eq \f(2a+2b,3c)=________.
【点拨】∵a∶b=2∶3,a∶c=3∶5,∴设a=6k,则b=9k,c=10k,∴a∶b∶c=6∶9∶10,eq \f(2a+2b,3c)=eq \f(2×(6k+9k),3×10k)=1.
【答案】6∶9∶10;1
20.【中考·兰州】如果eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=________.
【答案】3
三、解答题
21.【2021·金华期末】已知eq \f(a,2)=eq \f(b,3)=eq \f(c,5)≠0,求eq \f(2a-3b+4c,5a+3b-2c)的值.
解:设eq \f(a,2)=eq \f(b,3)=eq \f(c,5)=k,其中k≠0,则a=2k,b=3k,c=5k,
∴eq \f(2a-3b+4c,5a+3b-2c)=eq \f(4k-9k+20k,10k+9k-10k)=eq \f(5,3).
22.求下列各式中x的值.
(1)3∶x=2∶(x+1);
解:根据比例的基本性质,得3x+3=2x,
解得x=-3.
(2)1∶(x-5)=2∶(x+5).
根据比例的基本性质,得x+5=2x-10,
解得x=15.
23.已知eq \f(a,b)=eq \f(c,d),求证:eq \f(a-b,b)=eq \f(c-d,d).
证明:∵eq \f(a,b)=eq \f(c,d),∴eq \f(a,b)-1=eq \f(c,d)-1,
即eq \f(a,b)-eq \f(b,b)=eq \f(c,d)-eq \f(d,d),
∴eq \f(a-b,b)=eq \f(c-d,d).
24.已知a,b,c为△ABC的三边长,且a+b+c=48,eq \f(a,4)=eq \f(b,5)=eq \f(c,7),求△ABC三边的长.
解:设eq \f(a,4)=eq \f(b,5)=eq \f(c,7)=x(x≠0),
则a=4x,b=5x,c=7x.
∵a+b+c=48,∴4x+5x+7x=48,解得x=3.
∴a=4x=12,b=5x=15,c=7x=21.
25.已知a,b,c都不为0,如果2a-b-4c=0,a+b-5c=0,求a:b:c.
解:由题意得eq \b\lc\{(\a\vs4\al\c1(2a-b=4c,,a+b=5c,))解得eq \b\lc\{(\a\vs4\al\c1(a=3c,,b=2c.))
所以a:b:c=3c:2c:c=3:2:1.
(1)已知a:b:c=3:4:5,求eq \f(2a-3b+c,a+b)的值;
解:设a=3k,b=4k,c=5k(k≠0),
∴eq \f(2a-3b+c,a+b)=eq \f(6k-12k+5k,3k+4k)=eq \f(-k,7k)=-eq \f(1,7).
(2)已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=2,且b-2d+3f≠0,求eq \f(a-2c+3e,b-2d+3f) 的值.
解:∵eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=2,
∴a=2b,c=2d,e=2f.
∴eq \f(a-2c+3e,b-2d+3f)=eq \f(2b-4d+6f,b-2d+3f)=eq \f(2(b-2d+3f),b-2d+3f)=2.
26.阅读下列解题过程:
已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=…=eq \f(m,n),若b+d+f+…+n≠0,
求证:eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(m,n).
证明:设eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=…=eq \f(m,n)=k(k≠0),
则a=bk,c=dk,e=fk,…,m=nk,
又b+d+f+…+n≠0,
∴eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(bk+dk+fk+…+nk,b+d+f+…+n)=eq \f((b+d+f+…+n)k,b+d+f+…+n)=k.
∴eq \f(a+c+e+…+m,b+d+f+…+n)=eq \f(m,n).
运用上述结论解决下面的问题:
(1)已知eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=eq \f(2,3),b+2d-3f≠0,求eq \f(a+2c-3e,b+2d-3f)的值;
解:∵eq \f(a,b)=eq \f(c,d)=eq \f(e,f)=eq \f(2,3),
∴eq \f(a,b)=eq \f(2c,2d)=eq \f(3e,3f)=eq \f(2,3).
∵b+2d-3f≠0,
∴eq \f(a+2c-3e,b+2d-3f)=eq \f(2,3).
(2)已知eq \f(a,b+c)=eq \f(b,a+c)=eq \f(c,a+b)=k,则函数y=kx+k的图象必经过( B )
A.第一、二象限 B.第二、三象限
C.第三、四象限 D.第一、四象限
(3)已知eq \f(b+c,a)=eq \f(a+c,b)=eq \f(a+b,c)=k,求k的值.
解:①当a+b+c=0时,
∵eq \f(b+c,a)=eq \f(a+c,b)=eq \f(a+b,c)=k,
∴eq \f(-a,a)=eq \f(-b,b)=eq \f(-c,c)=k,
∴k=-1;
②当a+b+c≠0时,
∵eq \f(b+c,a)=eq \f(a+c,b)=eq \f(a+b,c)=k,
∴eq \f(2(a+b+c),a+b+c)=k,∴k=2.
综上所述,k的值为-1或2.
浙教版九年级上册3.1 圆同步测试题: 这是一份浙教版九年级上册3.1 圆同步测试题,共12页。试卷主要包含了1 圆等内容,欢迎下载使用。
初中数学湘教版九年级上册3.1 比例线段精品同步测试题: 这是一份初中数学湘教版九年级上册3.1 比例线段精品同步测试题,共7页。
湘教版九年级上册3.1 比例线段综合训练题: 这是一份湘教版九年级上册3.1 比例线段综合训练题,共2页。试卷主要包含了下列四条线段中,不能成比例的是,若=,则的值为等内容,欢迎下载使用。