![2.3 第1课时 一元二次不等式的解法、三个二次的关系同步练习-2021-2022学年人教A版(2019)高一数学上册(新教材必修一)第1页](http://m.enxinlong.com/img-preview/3/3/12195488/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2.3 第1课时 一元二次不等式的解法、三个二次的关系同步练习-2021-2022学年人教A版(2019)高一数学上册(新教材必修一)第2页](http://m.enxinlong.com/img-preview/3/3/12195488/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教A版高一数学上册课件+同步练习(必修一)
- 2.2 第2课时 基本不等式的应用同步练习-2021-2022学年人教A版(2019)高一数学上册(新教材必修一) 试卷 2 次下载
- 2.1 第2课时 不等式的性质同步练习-2021-2022学年人教A版(2019)高一数学上册(新教材必修一) 试卷 1 次下载
- 2.3 第2课时 一元二次不等式的应用同步练习-2021-2022学年人教A版(2019)高一数学上册(新教材必修一) 试卷 3 次下载
- 3.1.1 函数的概念课件-2021-2022学年人教A版(2019)高一数学(必修一) 课件 3 次下载
- 3.1.2 第1课时 函数的表示法课件-2021-2022学年人教A版(2019)高一数学(必修一) 课件 3 次下载
数学必修 第一册2.3 二次函数与一元二次方程、不等式第1课时随堂练习题
展开
这是一份数学必修 第一册2.3 二次函数与一元二次方程、不等式第1课时随堂练习题,共5页。
1.不等式9x2+6x+1≤0的解集是( )
A. eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|(\a\vs4\al\c1(x≠-\f(1,3)))))B. eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|(\a\vs4\al\c1(-\f(1,3)≤x≤\f(1,3)))))
C.∅ D. eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|(\a\vs4\al\c1(x=-\f(1,3)))))
解析:选D.原不等式可化为(3x+1)2≤0,所以3x+1=0,所以x=- eq \f(1,3).故选D.
2.下列四个不等式:
①-x2+x+1≥0;②x2-2 eq \r(5)x+ eq \r(5)>0;③x2+6x+10>0;④2x2-3x+4<1.其中解集为R的是( )
A.① B.②
C.③ D.④
解析:选C.①显然不可能;②中Δ=(-2 eq \r(5))2-4× eq \r(5)>0,解集不为R;
③中Δ=62-4×10<0,满足条件;
④中不等式可化为2x2-3x+3<0,所对应的二次函数的图象开口向上,显然不可能.
故选C.
3.不等式x2+ax+44或a
相关试卷
这是一份2021学年2.3 二次函数与一元二次方程、不等式第2课时练习,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教A版 (2019)必修 第一册3.1 函数的概念及其表示第1课时达标测试,共5页。
这是一份人教A版 (2019)必修 第一册2.3 二次函数与一元二次方程、不等式第2课时达标测试,共6页。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)