2019年浙教版数学九年级上学期期末专项复习卷(二)简单事件的概率
展开一、选择题(共10小题;共50分)
1. 下列说法中,不正确的是
A. 某事件发生的概率为 1,则它必然会发生
B. 某事件发生的概率为 0,则它必然不会发生
C. 抛一个普通纸杯,杯口不可能向上
D. 从一批产品中任取一个为次品是可能的
2. “若 m,n 是实数,则 m−n2<0”这一事件是
A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件
3. 袋子中装有 4 个黑球和 2 个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件中,属于必然事件的是
A. 摸出的三个球中至少有一个球是黑球
B. 摸出的三个球中至少有一个球是白球
C. 摸出的三个球中至少有两个球是黑球
D. 摸出的三个球中至少有两个球是白球
4. 有 5 张写有数字的卡片(如图甲所示),它们的背面都相同,现将它们背面朝上(如图乙所示),从中翻开任意一张,得到数字 2 的概率是
A. 15B. 25C. 23D. 12
5. 同时抛掷 A,B 两个均匀的小正方体(每个面上分别标有数字 1,2,3,4,5,6),设两正方体朝上的数字分别为 x,y,并以此确定点 Px,y,那么点 P 落在抛物线 y=−x2+3x 上的概率为
A. 118B. 112C. 19D. 136
6. 四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为
A. 34B. 14C. 13D. 12
7. 在数 −1,1,2 中任取两个数写成有序数对作为点的坐标,那么该点刚好在第一象限的概率是
A. 12B. 13C. 23D. 14
8. 如图所示,随机闭合开关 S1,S2,S3 中的两个,则能让两盏灯泡同时发光的概率为
A. 16B. 13C. 12D. 23
9. 如图所示,一个小球从点 A 沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达点 H 的概率是
A. 12B. 14C. 16D. 18
10. 如图所示,在平面直角坐标系中,点 A1,A2 在 x 轴上,点 B1,B2 在 y 轴上,其坐标分别为 A11,0,A22,0,B10,1,B20,2,分别以 A1,A2,B1,B2 其中的任意两点与点 O 为顶点作三角形,则所作的三角形中,等腰三角形的概率是
A. 34B. 13C. 23D. 12
二、填空题(共6小题;共30分)
11. 随意翻一本2015年日历(每天一页),翻出1月6日的概率为 ,翻出4月31日的概率为 .
12. 小明与父母从广州乘火车回梅州探亲,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .
13. 三张完全相同的卡片上分别写有函数 y=3x,y=3x,y=x2,从中随机抽取一张,则所得卡片上的函数图象在第一象限内 y 随 x 的增大而减小和概率是 .
14. 抽屉里放有 4 只白袜子和 2 只黑袜子,从中任意摸出 1 只袜子,记下颜色后放回,搅匀,再摸出 1 只袜子,则摸出的两只袜子颜色相同的概率是 .
15. 若质量抽检时得出任抽一件西服成品为合格品的概率为 0.9,则销售 1200 件西服时约需多准备 件合格品供顾客调换.
16. 如图所示,△ABC 三边的中点 D,E,F 组成 △DEF,△DEF 三边的中点 M,N,P 组成 △MNP,将 △FPM 与 △ECD 涂上阴影,假设可以随意在 △ABC 中取点,那么这个点取在阴影部分中的概率为 .
三、解答题(共7小题;共91分)
17. 小华去展览馆看科普知识展览,该展览馆的大厅有 2 个验票口A,B(可进出),另外还有 2 个出口C,D(不许进).
(1)小华从进入到离开共有多少种可能的进出方式?(用列表或画树状图的方法分析)
(2)小华不从同一验票口进出的概率是多少?
18. 一个不透明的袋子里装有编号分别为 1,2,3 的球(除编号以外,其余都相同),其中 1 号球 1 个,3 号球 3 个,从中随机摸出一个球是 2 号球的概率为 13.
(1)求袋子里 2 号球的个数.
(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为 x,乙摸出球的编号记为 y,用列表法求点 Ax,y 在直线 y=x 下方的概率.
19. 保险公司对某地区进行调查后发现,活到 50 岁的有 69800 人,在该年龄死亡的有 980 人,活到 70 岁的有 38500 人,在该年龄死亡的有 2400 人.
(1)某人今年 50 岁,则他活到 70 岁的概率为多少?
(2)若有 20000 个 50 岁的人参加人寿保险,当年死亡的赔偿金为每人 2 万元,预计保险公司该年赔付总额为多少?
20. 如图所示,某商场设立了一个可以自由转动的转盘,并规定:顾客购物 10 元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:
转动转盘的次数n1001502005008001000落在"铅笔"区域的次数m68111136345564701落在"铅笔"区域的频率mn
(1)计算并将表格填写完整;
(2)当 n 很大时,请估计频率将会接近多少.
(3)假如你去转动一次该转盘,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少度?(精确到 1∘)
21. 甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B分成 4 等份、 3 等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为 3 的倍数,则甲胜;若指针所指两个区域的数字之和为 4 的倍数,则乙胜.若指针落在分割线上,则需要重新转动转盘.
(1)试用列表或画树状图的方法,求甲获胜的概率.
(2)这个游戏规则对甲、乙双方公平吗?试说明理由.
22. 某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾和其他垃圾三类,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.
(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率.
(2)为了调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共 1000 吨生活垃圾,数据统计如下表所示(单位:吨):
ABCa400100100b3024030c202060
试估计厨余垃圾投放正确的概率.
23. 现有 50 位学生,每位学生都有一个序号,将 50 张编有学生序号(从 1 号到 50 号)的卡片(除序号不同外其他均相同)打乱顺序重新排列,从中任意抽取 1 张卡片.
(1)在序号中,是 20 的倍数的有:20,40.能整除 20 的有:1,2,4,5,10(为了不重复计数,20 只计一次).求取到的卡片上的序号是 20 的倍数或能整除 20 的概率.
(2)若规定取到的卡片上的序号是 k(k 是满足 1≤k≤50 的整数),则序号是 k 的倍数或能整除 k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由.
(3)请你设计一个规则,能公平地选出 10 位学生参加某项活动,并说明你的规则是符合要求的.
答案
第一部分
1. C
2. C
3. A
4. B
5. A
6. D
7. B
8. B
9. B
10. D
【解析】一共可以组成 4 个三角形,其中等腰三角形只有 △OA1B1,△OA2B2,概率为 24=12.
第二部分
11. 1365,0
【解析】2015年有 365 天,1月6日是其中一天,P=1365;4月只有 30 天,没有 31 日,所以翻不出4月31日,为不可能事件,概率为 0.
12. 13
13. 13
14. 59
15. 134
【解析】设需多准备 x 件,则 1−0.91200+x=x,解得 x=4003,x 取整数为 134 件.
16. 516
【解析】令 S△ABC=1,S△EDC=14,S△FMP=116,阴影部分为 516.
第三部分
17. (1) 共有 8 种进出方式.
(2) P=68=34.
18. (1) 设 2 号球 m 个,则 m1+m+3=13,
∴m=2.
答:2 号球有 2 个.
(2) 列表如下,
共 30 种等可能情况,点 x,y 在直线 y=x 的下方的有 11 种,
∴P=1130.
答:点 x,y 在直线 y=x 的下方的概率为 1130.
19. (1) 由题意可知 l70=38500,l50=69800,
则 P=l70l50=3850069800≈0.5516.
(2) 由题意可知 l50=69800,d50=980,则 P=d50l50=98069800≈0.0140,
则预计保险公司该年赔付总额为 ω=20000×0.0140×2=560(万元).
20. (1) 0.68;0.74;0.68;0.69;0.705;0.701
(2) 0.70.
(3) 0.70.
(4) 0.70×360∘=252∘.
21. (1) 列表如下:
因为数字之和共有 12 种结果,其中“和是 3 的倍数”的结果有 4 种,
所以 P甲=412=13.
(2) 因为“和是 4 的倍数”的结果有 3 种,
所以 P乙=312=14.
因为 13≠14,即 P甲≠P乙,
所以这个游戏规则对甲、乙双方不公平.
22. (1) 三类垃圾随机投入三类垃圾箱的树状图如下:
由树状图可知垃圾投放正确的概率为 39=13.
(2) 厨余垃圾投放正确的概率为 400400+100+100=23.
23. (1) 因为在序号中,是 20 的倍数的有:20,40;
能整除 20 的有:1,2,4,5,10(为了不重复计数,20 只计一次).
所以是 20 的倍数或者能整除 20 的数有 7 个,
则取到的卡片上序号是 20 的倍数或能整除 20 的概率为 750.
(2) 不公平.
因为无论 k 取何值,都能被 1 整除,
则序号为 1 的学生被抽中的概率为 1,即 100%,
而很明显抽到其他序号的学生概率不为 100%,
所以不公平.
(3) 先抽出一张,记下数字,然后每个数字加 5,得到序号.
若数字加 5 超过 50,则减掉 50,差为序号,
直到得到 10 人为止.(每个人都有机会)
第2章简单事件的概率-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江): 这是一份第2章简单事件的概率-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江),共10页。
2022年浙教版中考数学专题复习-简单事件的概率(提高篇): 这是一份2022年浙教版中考数学专题复习-简单事件的概率(提高篇),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2021年浙教版数学九年级上册《简单事件的概率》期末复习卷(含答案): 这是一份2021年浙教版数学九年级上册《简单事件的概率》期末复习卷(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。